- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的中位数
- + 由频率分布直方图估计中位数
- 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求频率分布直方图中a的值;
(2)求这50名问卷评分数据的中位数;
(3)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.

(1)求频率分布直方图中a的值;
(2)求这50名问卷评分数据的中位数;
(3)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.
环保部门要对所有的新车模型进行广泛测试,以确定它的行车里程的等级,下表是对100辆新车模型在一个耗油单位内行车里程(单位:公里)的测试结果.
(1)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;
(2)用分层抽样的方法从行车里程在区间
与
的新车模型中任取5辆,并从这5辆中随机抽取2辆,求其中恰有一个新车模型行车里程在
内的概率.
分组 | 频数 |
![]() | 6 |
![]() | 10 |
![]() | 20 |
![]() | 30 |
![]() | 18 |
![]() | 12 |
![]() | 4 |
(1)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;
(2)用分层抽样的方法从行车里程在区间



将某新电动车的续航里程数统计如下图所示,则该款电动车的续航里程数的中位数约为( )


A.325 | B.312.5 | C.316.67 | D.310 |
为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛.从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段
,
,
,
,
,
,到如图所示的频率分布直方图.

(1)求图中
的值及样本的中位数与众数;
(2)若从竞赛成绩在
与
两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于
分为事件
,求事件
发生的概率.
(3)为了激励同学们的学习热情,现评出一二三等奖,得分在
内的为一等奖,得分在
内的为二等奖, 得分在
内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设
为获得三等奖的人数,求
的分布列与数学期望.







(1)求图中

(2)若从竞赛成绩在





(3)为了激励同学们的学习热情,现评出一二三等奖,得分在





某书店为了了解销售单价(单位:元)在
内的图书销售情况,从2018年上半年已经销售的图书中随机抽取100本,获得的所有样本数据按照
,
,
,
,
,
分成6组,制成如图所示的频率分布直方图,已知样本中销售单价在
内的图书数是销售单价在
内的图书数的2倍.

(1)求出x与y,再根据频率分布直方图佔计这100本图书销售单价的平均数、中位数(同一组中的数据用该组区间的中点值作代表);
(2)用分层抽样的方法从销售单价在
内的图书中共抽取40本,求单价在6组样本数据中的图书销售的数量;
(3)从(2)中抽取且价格低于12元的书中任取2本,求这2本书价格都不低于10元的概率.










(1)求出x与y,再根据频率分布直方图佔计这100本图书销售单价的平均数、中位数(同一组中的数据用该组区间的中点值作代表);
(2)用分层抽样的方法从销售单价在

(3)从(2)中抽取且价格低于12元的书中任取2本,求这2本书价格都不低于10元的概率.
从一批产品中随机抽取
件测量其内径,将测得数据进行统计整理后得到如下图所示的频率分布直方图.

(Ⅰ)求这
件产品中,内径在
内的产品数量;
(Ⅱ)试估计这批产品内径的中位数;
(Ⅲ)直接比较这批产品内径的平均数
与
(单位毫米)的大小关系,不必说明理由.


(Ⅰ)求这


(Ⅱ)试估计这批产品内径的中位数;
(Ⅲ)直接比较这批产品内径的平均数


“公平正义”是社会主义和谐社会的重要特征,是社会主义法治理念的价值追求.“考试”作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自已能否被录取?能获得什么样的职位?
某单位准备通过考试(按照高分优先录取的原则)录用
名,其中
个高薪职位和
个普薪职位.实际报名人数为
名,考试满分为
分. 考试后对部分考生考试成绩进行抽样分析,得到频率分布直方图如下:

试结合此频率分布直方图估计:
(1)此次考试的中位数是多少分(保留为整数)?
(2)若考生甲的成绩为280分,能否被录取?若能被录取,能否获得高薪职位?(分数精确到个位,概率精确到千分位)
某单位准备通过考试(按照高分优先录取的原则)录用






试结合此频率分布直方图估计:
(1)此次考试的中位数是多少分(保留为整数)?
(2)若考生甲的成绩为280分,能否被录取?若能被录取,能否获得高薪职位?(分数精确到个位,概率精确到千分位)
某高校在2019年的自主招生笔试成绩(满分200分)中,随机抽取100名考生的成绩,按此成绩分成五组,得到如下的频率分布表:
(1)求频率分布表中
,
,
的值;
(2)估计笔试成绩的平均数及中位数(同一组中的数据用该组区间的中点值作代表);(精确到0.1)
(3)若从第四组、第五组的学生中按组用分层抽样的方法抽取6名学生参加面试,用简单随机抽样方法从6人中抽取2人作为正、副小组长,求“抽取的2人为同一组”的概率.
组号 | 分组 | 频数 | 频率 |
第一组 | ![]() | 15 | ![]() |
第二组 | ![]() | 25 | 0.25 |
第三组 | ![]() | 30 | 0.3 |
第四组 | ![]() | ![]() | ![]() |
第五组 | ![]() | 10 | 0.1 |
(1)求频率分布表中



(2)估计笔试成绩的平均数及中位数(同一组中的数据用该组区间的中点值作代表);(精确到0.1)
(3)若从第四组、第五组的学生中按组用分层抽样的方法抽取6名学生参加面试,用简单随机抽样方法从6人中抽取2人作为正、副小组长,求“抽取的2人为同一组”的概率.