某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:

(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);
(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,现从这20人中,随机选取2人各赠送一部华为手机,求这2名市民年龄都在内的人数为,求的分布列及数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.

(1)求图中的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.
当前题号:2 | 题型:解答题 | 难度:0.99
某校随机抽取100名同学进行“垃圾分类"的问卷测试,测试结果发现这100名同学的得分都在[50,100]内,按得分分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图,则这100名同学的得分的中位数为(    )
A.B.
C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
某市统计局就某地居民的月收入调查了10000人,他们的月收入均在内.现根据所得数据画出了该样本的频率分布直方图如下.(每个分组包括左端点,不包括右端点,如第一组表示月收入在内)
(1)求某居民月收入在内的频率;
(2)根据该频率分布直方图估计居民的月收入的中位数;
(3)为了分析居民的月收入与年龄、职业等方面的关系,需再从这10000人中利用分层抽样的方法抽取100人作进一步分析,则应从月收入在内的居民中抽取多少人?
当前题号:4 | 题型:解答题 | 难度:0.99
2019年是中华人民共和国成立70周年,某校党支部举办了一场“我和我的祖国”知识竞赛,满分100分,回收40份答卷,成绩均落在区间内,将成绩绘制成如下的频率分布直方图.

(1)估计知识竞赛成绩的中位数和平均数;
(2)从分数段中,按分层抽样随机抽取5份答卷,再从对应的党员中选出3位党员参加县级交流会,求选出的3位党员中有2位成绩来自于分数段的概率.
当前题号:5 | 题型:解答题 | 难度:0.99
某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为及以上的花苗为优质花苗.
(1)求图中的值,并求综合评分的中位数.
(2)用样本估计总体,以频率作为概率,若在两块试验地随机抽取棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;
(3)填写下面的列联表,并判断是否有的把握认为优质花苗与培育方法有关.
 
优质花苗
非优质花苗
合计
甲培育法

 
 
乙培育法
 

 
合计
 
 
 
 
附:下面的临界值表仅供参考.
















 
(参考公式:,其中.)
当前题号:6 | 题型:解答题 | 难度:0.99
某校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.

(1)求出第4组的频率,并补全频率分布直方图;
(2)根据样本频率分布直方图估计样本的中位数与平均数;
(3)如果用分层抽样的方法从“优秀”和“良好”的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?
当前题号:7 | 题型:解答题 | 难度:0.99
为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)的频数分布统计图如图所示,如果得分值的中位数为,众数为,平均数为,则中的最大者是____________.
当前题号:8 | 题型:解答题 | 难度:0.99
某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1)经计算估计这组数据的中位数;
(2)现按分层抽样从质量为的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在内的概率.
(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:
A:所有芒果以10元/千克收购;
B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?
当前题号:9 | 题型:解答题 | 难度:0.99
某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在试验地随机抽选各株,对每株进行综合评分(评分的高低反映花苗品质的高低),将每株所得的综合评分制成如图所示的频率分布直方图:

(1)求图中的值,并求综合评分的中位数;
(2)记综合评分为及以上的花苗为优质花苗.填写下面的列联表,并判断是否有的把握认为优质花苗与培育方法有关.
 
优质花苗
非优质花苗
合计
甲培育法

 
 
乙培育法
 

 
合计
 
 
 
 
附:下面的临界值表仅供参考.
















 
(参考公式:,其中.)
当前题号:10 | 题型:解答题 | 难度:0.99