- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需要看不同类型的书籍,为了合理配备资源,现对小区看书人员进行年龄调查,随机抽取了一天40名读书者进行调查. 将他们的年龄分成6段:
,
后得到如图所示的频率分布直方图,问:

(1)在40名读书者中年龄分布在
的人数;
(2)估计40名读书者年龄的平均数和中位数.

后得到如图所示的频率分布直方图,问:

(1)在40名读书者中年龄分布在

(2)估计40名读书者年龄的平均数和中位数.
读书可以使人保持思想活力,让人得到智慧启发,让人滋养浩然正气书籍是文化的重要载体,读书是承继文化的重要方式某地区为了解学生课余时间的读书情况,随机抽取了
名学生进行调查,根据调查得到的学生日均课余读书时间绘制成如图所示的频率分布直方图,将日均课余读书时间不低于
分钟的学生称为“读书之星”,日均课余读书时间低于
分钟的学生称为“非读书之星”:已知抽取的样本中日均课余读书时间低于
分钟的有
人

(1)求
的值;
(2)根据已知条件完成下面的
列联表,并判断是否有
以上的把握认为“读书之星”与性别有关?
(3)将上述调查所得到的频率视为概率,现从该地区大量学生中,随机抽取
名学生,每次抽取
名,已知每个人是否被抽到互不影响,记被抽取的“读书之星”人数为随机变量
,求
的分布列和期望
附:
,其中
.






(1)求

(2)根据已知条件完成下面的


| 非读书之星 | 读书之星 | 总计 |
男 | | | |
女 | | ![]() | ![]() |
总计 | | | |
(3)将上述调查所得到的频率视为概率,现从该地区大量学生中,随机抽取





附:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
某校高二年级800名学生参加了地理学科考试,现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组
;第二组
;……;第六组
,并据此绘制了如图所示的频率分布直方图.

(1)求每个学生的成绩被抽中的概率;
(2)估计这次考试地理成绩的平均分和中位数;
(3)估计这次地理考试全年级80分以上的人数.




(1)求每个学生的成绩被抽中的概率;
(2)估计这次考试地理成绩的平均分和中位数;
(3)估计这次地理考试全年级80分以上的人数.
在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第五组)的频数为( )


A.12 | B.24 | C.36 | D.48 |
某调查机构调查了某地100个新生婴儿的体重,并根据所得数据画出了样本的频率分布直方图(如图所示),则新生婴儿的体重(单位:
)在
的人数是______.



某商场在国庆促销活动中,对某天9时至19时的促销额进行统计,其频率分布直方图如图所示,已知15时至17时的销售额为8万元,则当天13时前的销售额为______万元;

2017年5月,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.乘坐高铁可以网络购票,为了研究网络购票人群的年龄分布情况,在5月31日重庆到成都高铁9600名网络购票的乘客中随机抽取了120人进行了统计并记录,按年龄段将数据分成6组:
,得到如图所示的直方图:

(1)若从总体的9600名网络购票乘客中随机抽取一人,估计其年龄大于35岁的概率;
(2)试估计总体中年龄在区间
内的人数;
(3)试通过直方图,估计5月31日当天网络购票的9600名乘客年龄的中位数.


(1)若从总体的9600名网络购票乘客中随机抽取一人,估计其年龄大于35岁的概率;
(2)试估计总体中年龄在区间

(3)试通过直方图,估计5月31日当天网络购票的9600名乘客年龄的中位数.
某家电公司销售部门共有
名销售员,每年部门对每名销售员都有
万元的年度销售任务.已知这
名销售员去年完成的销售额都在区间
(单位:百万元)内,现将其分成
组,第
组、第
组、第
组、第
组、第
组对应的区间分别为
,
,
,
,
,并绘制出如下的频率分布直方图.

(1)求
的值,并计算完成年度任务的人数;
(2)用分层抽样的方法从这
名销售员中抽取容量为
的样本,求这
组分别应抽取的人数;
(3)现从(2)中完成年度任务的销售员中随机选取
名,奖励海南三亚三日游,求获得此奖励的
名销售员在同一组的概率.
















(1)求

(2)用分层抽样的方法从这



(3)现从(2)中完成年度任务的销售员中随机选取


某中学随机抽取部分高一学生调査其每日自主安排学习的时间(单位:分钟),并将所得数据绘制成如图所示的频率分布直方图,其中自主安排学习时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].

(1)求直方图中x的值;
(2)现采用分层抽样的方式从每日自主安排学习时间不超过40分钟的学生中随机抽取6人,若从这6人中随机抽取2人进行详细的每日时间安排调查,求抽到的2人每日自主安排学习时间均不低于20分钟的概率.

(1)求直方图中x的值;
(2)现采用分层抽样的方式从每日自主安排学习时间不超过40分钟的学生中随机抽取6人,若从这6人中随机抽取2人进行详细的每日时间安排调查,求抽到的2人每日自主安排学习时间均不低于20分钟的概率.