- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了比较注射
两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,毎组100只,其中一组注射药物
,另一组注射药物
.
(1)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;
(2)下表1和表2分别是注射药物
和
后的试验结果.(疱疹面积单位:
)
表1:注射药物
后皮肤疱疹面积的频数分布表

表2:注射药物
后皮肤疱疹面积的频数分布表

(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;

(ⅱ)完成下面
列联表,并回答能否有
的把握认为“注射药物
后的疱疹面积与注射药物
后的疱疹面积有差异”.
表3:

附:



(1)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;
(2)下表1和表2分别是注射药物



表1:注射药物


表2:注射药物


(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;


(ⅱ)完成下面




表3:

附:

下列说法正确的是 ( )
A.对于样本数据增加时,频率分布表不变化 |
B.对于样本数据增加时,茎叶图不变化 |
C.对于样本数据增加时,频率折线图不会跟着变化 |
D.对于样本数据增加时,频率分布直方图变化不太大 |
有一容量为50的样本,数据的分组以及各组的频数如下:
[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.
(1)列出样本的频率分布表.
(2)画出频率分布直方图.
(3)根据频率分布表,估计数据落在[15.5,24.5)内的可能性约是多少?
[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.
(1)列出样本的频率分布表.
(2)画出频率分布直方图.
(3)根据频率分布表,估计数据落在[15.5,24.5)内的可能性约是多少?
公交车的数量太多容易造成资源浪费,太少又难以满足乘客的需求,为了合理布置车辆,公交公司在2路车的乘客中随机调查了50名乘客,经整理,他们候车时间(单位:
)的茎叶图如下:

(Ⅰ)将候车时间分为
八组,作出相应的频率分布直方图;

(Ⅱ)若公交公司将2路车发车时间调整为每隔15
发一趟车,那么上述样本点将发生变化(例如候车时间为9
的不变,候车时间为17
的变为2
),现从2路车的乘客中任取5人,设其中候车时间不超过10
的乘客人数为
,求
的数学期望.


(Ⅰ)将候车时间分为


(Ⅱ)若公交公司将2路车发车时间调整为每隔15







某公司为了了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频率分布表.
A地区用户满意度评分的频率分布直方图

B地区用户满意度评分的频率分布表
(Ⅰ)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)
B地区用户满意度评分的频率分布直方图

(Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级:
估计哪个地区的用户的满意度等级为不满意的概率大,说明理由.
A地区用户满意度评分的频率分布直方图

B地区用户满意度评分的频率分布表
满意度评分分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 2 | 8 | 14 | 10 | 6 |
(Ⅰ)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)
B地区用户满意度评分的频率分布直方图

(Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级:
满意度评分 | 低于70分 | 70分到89分 | 不低于90分 |
满意度等级 | 不满意 | 满意 | 非常满意 |
估计哪个地区的用户的满意度等级为不满意的概率大,说明理由.
某厂两个车间某天各20名员工生产的产品数量如下图

(2)题
(1)现在已经根据两组数据完成了乙车间的产量的茎叶图,请自己写出甲车间的茎叶图部分,并通过完整的茎叶图说明甲乙两个车间哪个车间的平均产量高?
(2)对乙车间的产量,以组数为5进行分组,选组距为9构造下面的频率分布图表,并根据频率分布表求出乙车间产量的均值.

甲车间 | 乙车间 |
50,52,56,62,65 | 56,66,67,68,72 |
66,67,68,69,73 | 72,74,75,75,76 |
74,75,76,78,81 | 76,77,77,78,79 |
82,83,87,90,97 | 80,81,84,88,98 |
(2)题
(1)现在已经根据两组数据完成了乙车间的产量的茎叶图,请自己写出甲车间的茎叶图部分,并通过完整的茎叶图说明甲乙两个车间哪个车间的平均产量高?
(2)对乙车间的产量,以组数为5进行分组,选组距为9构造下面的频率分布图表,并根据频率分布表求出乙车间产量的均值.
区间 | 频数 | 频率 |
![]() | | |
![]() | | |
![]() | | |
![]() | | |
![]() | | |
为检测空气质量,某市环保局随机抽取了甲、乙两地2016年20天的PM2.5日平均浓度(单位:微克/立方米)是监测数据,得到甲地PM2.5日平均浓度的频率分布直方图和乙地PM2.5日平均浓度的频数分布表.
(2)求甲地20天PM2.5日平均浓度的中位数;
(3)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:

记事件
:“甲地市民对空气质量的满意度等级为不满意”.根据所给数据,利用样本估计总体的统计思想,以事件发生的频率作为相应事件发生的概率,求事件
的概率.
甲地20天PM2.5日平均浓度频率分布直方图
乙地20天PM2.5日平均浓度频数分布表
(2)求甲地20天PM2.5日平均浓度的中位数;
(3)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:

记事件


为了了解某城市居民用水量的情况,我们获得100位居民某年的月均用水量(单位:吨)通过对数据的处理,我们获得了该100位居民月均用水量的频率分布表,并绘制了频率分布直方图(部分数据隐藏)
100位居民月均用水量的频率分布表

(1)确定表中
与
的值;
(2)求频率分布直方图中左数第4个矩形的高度;
(3)在频率分布直方图中画出频率分布折线图;
(4)我们想得到总体密度曲线,请回答我们应该怎么做?
100位居民月均用水量的频率分布表
组号 | 分组 | 频数 | 频率 |
1 | ![]() | 4 | 0.04 |
2 | ![]() | | 0.08 |
3 | ![]() | 15 | |
4 | ![]() | 22 | |
5 | ![]() | ![]() | |
6 | ![]() | 14 | 0.14 |
7 | ![]() | 6 | ![]() |
8 | ![]() | 4 | 0.04 |
9 | ![]() | | 0.02 |
合 计 | 100 | |

(1)确定表中


(2)求频率分布直方图中左数第4个矩形的高度;
(3)在频率分布直方图中画出频率分布折线图;
(4)我们想得到总体密度曲线,请回答我们应该怎么做?
某校有150名学生参加了中学生环保知识竞赛,为了解成绩情况,现从中随机抽取50名学生的成绩进行统计(所有学生成绩均不低于60分).请你根据尚未完成的频率分布表,解答下列问题:
(1)写出M 、N 、p、q(直接写出结果即可),并作出频率分布直方图;
(2)若成绩在90分以上学生获得一等奖,试估计全校所有参赛学生获一等奖的人数;
(3)现从所有一等奖的学生中随机选择2名学生接受采访,已知一等奖获得者中只有2名女生,求恰有1名女生接受采访的概率.

(1)写出M 、N 、p、q(直接写出结果即可),并作出频率分布直方图;
(2)若成绩在90分以上学生获得一等奖,试估计全校所有参赛学生获一等奖的人数;
(3)现从所有一等奖的学生中随机选择2名学生接受采访,已知一等奖获得者中只有2名女生,求恰有1名女生接受采访的概率.
分组 | 频数 | 频率 | |
第1组 | [60,70) | M | 0.26 |
第2组 | [70,80) | 15 | p |
第3组 | [80,90) | 20 | 0.40 |
第4组 | [90,100] | N | q |
合计 | 50 | 1 |

从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
(1)在表格中作出这些数据的频率分布直方图;

(2)求这些数据的众数和中位数
(3)估计这种产品质量指标的平均数(同一组中的数据用该组区间的中点值作代表);
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(1)在表格中作出这些数据的频率分布直方图;

(2)求这些数据的众数和中位数
(3)估计这种产品质量指标的平均数(同一组中的数据用该组区间的中点值作代表);