- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是( )


A.CPI一篮子商品中所占权重最大的是居住 |
B.CPI一篮子商品中吃穿住所占权重超过50% |
C.猪肉在CPI一篮子商品中所占权重约为2.5% |
D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18% |
如图统计了截止2019年年底中国电动车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法正确的是( )
中国电动车充电桩细分产品占比情况:

中国电动车充电桩细分产品保有量情况:(单位:万台)

中国电动车充电桩细分产品占比情况:

中国电动车充电桩细分产品保有量情况:(单位:万台)

A.私人类电动汽车充电桩保有量增长率最高的年份是2018年 |
B.公共类电动汽车充电桩保有量的中位数是25.7万台 |
C.公共类电动汽车充电桩保有量的平均数为23.12万台 |
D.从2017年开始,我国私人类电动汽车充电桩占比均超过![]() |
为提高产品质量,某企业质量管理部门经常不定期地对产品进行抽查检测,现对某条生产线上随机抽取的100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.

(1)求图中
的值,并求综合评分的中位数;
(2)用样本估计总体,视频率作为概率,在该条生产线中随机抽取3个产品,求所抽取的产品中一等品数的分布列和数学期望.

(1)求图中

(2)用样本估计总体,视频率作为概率,在该条生产线中随机抽取3个产品,求所抽取的产品中一等品数的分布列和数学期望.
对一名学生8次的数学成绩进行了统计,第
次统计得到的数据为
,具体如下表所示:
在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中
是这8个数据的平均数),则输出的
的值是( )



![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
![]() | 100 | 101 | 103 | 103 | 104 | 106 | 107 | 108 |
在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中



A.9 | B.8 | C.7 | D.6 |
如图是某高三学生14次模考数学成绩的茎叶图,第1次到第14次的考试成绩依次记为
,
,…,
.将14次成绩输入程序框图,则输出的结果是( )







A.8 | B.9 | C.10 | D.11 |
某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间
内)中,按照
的比例进行分层抽样,统计结果按
,
,
,
,
,分组,整理如下图:

(1)求频率分布直方图(图乙)中
的值,并估计1200个日销售量中,数据在区间
中的个数.
(2)从日销售量在
的甲种酸奶的数据样本中抽取3个,记在
内的数据个数为
,求
的分布列.









(1)求频率分布直方图(图乙)中


(2)从日销售量在




为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽样100名市民,按年龄情况进行统计的频率分布表Ⅰ和频率分布直方图2.频率分布表Ⅰ


(1)频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图统计这500名志愿者得平均年龄;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加的宣传活动,再从这20名中选取2名志愿者担任主要发言人.记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.


(1)频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图统计这500名志愿者得平均年龄;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加的宣传活动,再从这20名中选取2名志愿者担任主要发言人.记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.
2017年某市政府为了有效改善市区道路交通拥堵状况出台了一系列的改善措施,其中市区公交站点重新布局和建设作为重点项目.市政府相关部门根据交通拥堵情况制订了“市区公交站点重新布局方案”,现准备对该“方案”进行调查,并根据调查结果决定是否启用该“方案”.调查人员分别在市区的各公交站点随机抽取若干市民对该“方案”进行评分,并将结果绘制成如图所示的频率分布直方图.相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,[60,80)内认定为满意,不低于80分认定为非常满意;③市民对公交站点布局的满意率不低于75%即可启用该“方案”;④用样本的频率代替概率.

(1)从该市800万人的市民中随机抽取5人,求恰有2人非常满意该“方案”的概率;并根据所学统计学知识判断该市是否启用该“方案”,说明理由.
(2)已知在评分低于60分的被调查者中,老年人占
,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中抽取3人担任群众督查员,记
为群众督查员中的老人的人数,求随机变量
的分布列及其数学期望
.

(1)从该市800万人的市民中随机抽取5人,求恰有2人非常满意该“方案”的概率;并根据所学统计学知识判断该市是否启用该“方案”,说明理由.
(2)已知在评分低于60分的被调查者中,老年人占




某校高一200名学生的期中考试语文成绩服从正态分布
,数学成绩的频数分布直方图如下:

(1)计算这次考试的数学平均分,并比较语文和数学哪科的平均分较高(假设数学成绩在频率分布直方图中各段是均匀分布的);
(2)如果成绩大于85分的学生为优秀,这200名学生中本次考试语文、数学优秀的人数大约各多少人?
(3)如果语文和数学两科都优秀的共有4人,从(2)中的这些同学中随机抽取3人,设三人中两科都优秀的有
人,求
的分布列和数学期望.
(附参考公式)若
,则
,


(1)计算这次考试的数学平均分,并比较语文和数学哪科的平均分较高(假设数学成绩在频率分布直方图中各段是均匀分布的);
(2)如果成绩大于85分的学生为优秀,这200名学生中本次考试语文、数学优秀的人数大约各多少人?
(3)如果语文和数学两科都优秀的共有4人,从(2)中的这些同学中随机抽取3人,设三人中两科都优秀的有


(附参考公式)若


