- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- 系统抽样
- + 分层抽样
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某电子商务平台的管理员随机抽取了1000位上网购物者,并对其年龄(在10岁到69岁之间)进行了调查,统计情况如下表所示.
已知
,
,
三个年龄段的上网购物的人数依次构成递减的等比数列.
(1)求
的值;
(2)若将年龄在
内的上网购物者定义为“消费主力军”,其他年龄段内的上网购物者定义为“消费潜力军”.现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,再从这5人中抽取2人,求这2人中至少有一人是消费潜力军的概率.
年龄 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 100 | 150 | ![]() | 200 | ![]() | 50 |
已知



(1)求

(2)若将年龄在

某精准扶贫帮扶单位,为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助精准扶贫户利用互联网电商渠道销售当地特产苹果.苹果单果直径不同单价不同,为了更好的销售,现从该精准扶贫户种植的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间[50,95]内(单位:
),统计的茎叶图如图所示:

(Ⅰ)按分层抽样的方法从单果直径落在[80,85),[85,90)的苹果中随机抽取6个,再从这6个苹果中随机抽取2个,求这两个苹果单果直径均在[85,90)内的概率;
(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.已知该精准扶贫户有20000个约5000千克苹果待出售,某电商提出两种收购方案:
方案
:所有苹果均以5.5元/千克收购;
方案
:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径 在[50,65)内按35元/箱收购,在[65,90)内按50元/箱收购,在[90,95]内按35元/箱收购.包装箱与分拣装箱工费为5元/箱.请你通过计算为该精准扶贫户推荐收益最好的方案.


(Ⅰ)按分层抽样的方法从单果直径落在[80,85),[85,90)的苹果中随机抽取6个,再从这6个苹果中随机抽取2个,求这两个苹果单果直径均在[85,90)内的概率;
(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.已知该精准扶贫户有20000个约5000千克苹果待出售,某电商提出两种收购方案:
方案

方案

某校进入高中数学竞赛复赛的学生中,高一年级有6人,高二年级有12人, 高三年级有24人,现采用分层抽样的方法从这些学生中抽取7人进行采访.
(1)求应从各年级分别抽取的人数;
(2)若从抽取的7人中再随机抽取2人做进一步了解(注高一学生记为
,高二学生记为
,高三学生记为
,
)
①列出所有可能的抽取结果;
②求抽取的2人均为高三年级学生的概率.
(1)求应从各年级分别抽取的人数;
(2)若从抽取的7人中再随机抽取2人做进一步了解(注高一学生记为




①列出所有可能的抽取结果;
②求抽取的2人均为高三年级学生的概率.
某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为 .
| 一年级 | 二年级 | 三年级 |
女生 | 373 | ![]() | ![]() |
男生 | 377 | 370 | ![]() |
国家统计局拟进行第四次经济普查,某调查机构从
个发达地区,
个欠发达地区,
个贫困地区中选取
个作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有
家企事业单位,
家个体经营户,普查情况如下表所示:
(1)写出选择
个国家综合试点地区采用的抽样方法;
(2)根据列联表判断是否有
的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;
(3)以频率作为概率,某普查小组从该小区随机选择
家企事业单位,
家个体经营户作为普查对象,入户登记顺利的对象数记为
,写出
的分布列,并求
的期望值.
附:参考公式:
,其中
参考数据:






普查对象类别 | 顺利 | 不顺利 | 合计 |
企事业单位 | 40 | 10 | 50 |
个体经营户 | 90 | 60 | 150 |
合计 | 130 | 70 | 200 |
(1)写出选择

(2)根据列联表判断是否有

(3)以频率作为概率,某普查小组从该小区随机选择





附:参考公式:


参考数据:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
某乡镇中学有初级职称教师100人,中级职称教师70人,高级职称教师30人,要从其中抽取20人进行体检,如果采用分层抽样的方法,则高级职称教师应该抽取的人数为______
为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为
的样本,得到一周参加社区服务的时间的统计数据如下表:

(1)求
,
;
(2)能否有
的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
附:

.


(1)求


(2)能否有

附:


某工厂生产A,B,C三种不同型号的产品,产量分别为400,800,600件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取90件进行检验,则应从C种型号的产品中抽取________ 件.
某学校高一、高二、高三共有学生3500人,其中高三学生人数是高一学生人数的两倍,高二学生人数比高一学生人数多300人,现在按
的抽样比用分层抽样的方法抽取样本,则应抽取高一学生人数为

A.8 | B.11 |
C.16 | D.10 |