- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- 系统抽样
- + 分层抽样
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
奇瑞公司生产的“奇瑞”轿车是我国民族品牌.该公司2009年生产的“旗云”、“风云”、“
”三类经济型轿车中,每类轿车均有舒适和标准两种型号.某周产量如下表:
若按分层抽样的方法在这一周生产的轿车中抽取50辆进行检测,则必须抽取“旗云”轿车10辆,“风云”轿车15辆.
(1)求
、
的值;
(2)在年终促销活动中,奇瑞公司奖给了某优秀销售公司2辆舒适型和3辆标准型“
”轿车,该销售公司又从中随机抽取了2辆作为奖品回馈消费者.求至少有一辆是舒适型轿车的概率.

车型 | 旗云 | 风云 | ![]() |
舒适 | 100 | 150 | ![]() |
标准 | 300 | ![]() | 600 |
若按分层抽样的方法在这一周生产的轿车中抽取50辆进行检测,则必须抽取“旗云”轿车10辆,“风云”轿车15辆.
(1)求


(2)在年终促销活动中,奇瑞公司奖给了某优秀销售公司2辆舒适型和3辆标准型“

某公司有1000名员工,其中:高层管理人员占5%,中层管理人员占15%,一般员工占80%,为了了解该公司的某种情况,现用分层抽样的方法抽取120名进行调查,则一般员工应抽取 人
某中学的高二(1)班男同学有
名,女同学有
名,老师按照分层抽样的方法组建了一个
人的课外兴趣小组.
(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出
名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
(3)试验结束后,第一次做试验的甲同学得到的试验数据为
、
、
、
、
,第二次做试验的乙同学得到的试验数据为
、
、
、
、
,请问哪位同学的实验更稳定?并说明理由.



(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出

(3)试验结束后,第一次做试验的甲同学得到的试验数据为










某高三年级共有学生1750名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为250的样本.已知样本容量中女生比男生少20人,则该校的女生人数是 ___________人.
已知某批零件共160个,按型号分类如下表:
用分层抽样的方法在该批零件中抽取一个容量为20的样本.
(Ⅰ)应在A型零件中抽取多少个?并求每个A型零件被抽取的概率;
(Ⅱ)现已抽取一个容量为20的样本,从该样本的A型和B型的零件中随机抽取2个,
求恰有一个B型零件的概率
型号 | A | B | C | D |
个数 | 24 | 8 | 72 | 56 |
用分层抽样的方法在该批零件中抽取一个容量为20的样本.
(Ⅰ)应在A型零件中抽取多少个?并求每个A型零件被抽取的概率;
(Ⅱ)现已抽取一个容量为20的样本,从该样本的A型和B型的零件中随机抽取2个,
求恰有一个B型零件的概率
调查某初中1000名学生的肥胖情况,得下表:
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15.
(1)求x的值;
(2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?
(3)已知
,肥胖学生中男生不少于女生的概率.
| 偏瘦 | 正常 | 肥胖 |
女生(人) | 100 | 173 | ![]() |
男生(人) | ![]() | 177 | ![]() |
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15.
(1)求x的值;
(2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?
(3)已知

某高中共有4500人,其中高一年级1200人,高二年级1500人,高三年级1800人,现采取分层抽样的方法抽取容量为600的样本,则高二年级抽取的人数为
某校高一年级共有320人,为调查高一年级学生每天晚自习自主支配学习时间(指除了完成老师布置的作业后学生根据自己的需要进行学习的时间)情况,学校采用随机抽样的方法从高一学生中抽取了n名学生进行问卷调查.根据问卷得到了这n名学生每天晚自习自主支配学习时间的数据(单位:分钟),按照以下区间分为七组:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70),得到频率分布直方图如图.已知抽取的学生中每天晚自习自主支配学习时间低于20分钟的人数是4人.
(1)求n的值;
(2)若高一全体学生平均每天晚自习自主支配学习时间少于45分钟,则学校需要减少作业量.根据以上抽样调查数据,学校是否需要减少作业量?
(注:统计方法中,同一组数据常用该组区间的中点值作为代表)
(3)问卷调查完成后,学校从第3组和第4组学生中利用分层抽样的方法抽取7名学生进行座谈,了解各学科的作业布置情况,并从这7人中随机抽取两名学生聘为学情调查联系人.求第3组中至少有1名学生被聘为学情调查联系人的概率.
(1)求n的值;
(2)若高一全体学生平均每天晚自习自主支配学习时间少于45分钟,则学校需要减少作业量.根据以上抽样调查数据,学校是否需要减少作业量?
(注:统计方法中,同一组数据常用该组区间的中点值作为代表)
(3)问卷调查完成后,学校从第3组和第4组学生中利用分层抽样的方法抽取7名学生进行座谈,了解各学科的作业布置情况,并从这7人中随机抽取两名学生聘为学情调查联系人.求第3组中至少有1名学生被聘为学情调查联系人的概率.

为征求个人所得税修改建议,某机构对居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)).
(Ⅰ)求居民月收入在[3000,4000)的频率;
(Ⅱ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,设月收入在[3500,4000)的这段应抽人数为m,求m的值.
(Ⅲ)若从(Ⅱ)中被抽取的m人中再选派两人参加一项慈善活动,求其中的甲、乙两人至少有一个被选中的概率.
(Ⅰ)求居民月收入在[3000,4000)的频率;
(Ⅱ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,设月收入在[3500,4000)的这段应抽人数为m,求m的值.
(Ⅲ)若从(Ⅱ)中被抽取的m人中再选派两人参加一项慈善活动,求其中的甲、乙两人至少有一个被选中的概率.

某校老、中、青老师的人数分别为80、160、240.现要用分层抽样的方法抽取容量为60的样本参加普通话测试,则应抽取的中年老师的人数为_____________ .