- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- 系统抽样
- + 分层抽样
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
近期中央电视台播出的《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:
(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示);

(2)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3、4、5组中用分层抽样抽取5名选手进入第二轮面试,求第3、4、5组每组各抽取多少名选手进入第二轮面试;
(3)在(2)的前提下,组委会决定在5名选手中随机抽取2名选手接受
考官进行面试,求:第4组至少有一名选手被考官
面试的概率.
组号 | 分组 | 频数 | 频率 |
第1组 | ![]() | | ![]() |
第2组 | ![]() | ① | |
第3组 | ![]() | 20 | ② |
第4组 | ![]() | 20 | ![]() |
第5组 | ![]() | 10 | ![]() |
合计 | | 100 | ![]() |
(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示);

(2)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3、4、5组中用分层抽样抽取5名选手进入第二轮面试,求第3、4、5组每组各抽取多少名选手进入第二轮面试;
(3)在(2)的前提下,组委会决定在5名选手中随机抽取2名选手接受


共享单车的出现方便了人们的出行,深受市民的喜爱.为调查某校大学生对共享单车的使用情况,从该校8000名学生随机抽取了100位同学进行调查,得到这100名同学每周使用共享单车的时间(单位:小时)频率分布直方图.

(1)已知该校大一学生有2400人,求抽取的100名学生中大一学生人数;
(2)根据频率分布直方图求该校大学生每周使用共享单车的平均时间.
(3)
从抽取的100个样本中,用分层抽样的方法抽取使用共享单车时间超过6小时同学5人,再从这5人中任选2人,求这2人使用共享单车时间都不超过8小时的概率.

(1)已知该校大一学生有2400人,求抽取的100名学生中大一学生人数;
(2)根据频率分布直方图求该校大学生每周使用共享单车的平均时间.
(3)

为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了
位老年人,结果如下:
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有
的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中。需要志愿帮助的老年人的比例?说明理由.
参考公式:

![]() | 男 | 女 |
需要 | ![]() | ![]() |
不需要 | ![]() | ![]() |
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有

(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中。需要志愿帮助的老年人的比例?说明理由.
参考公式:

![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
某单位员工按年龄分为
三组,其人数之比为
,现用分层抽样的方法从总体中抽取一个容量为
的样本,若
组中甲、乙二人均被抽到的概率是
,则该单位员工总数为______________.





一支田径队员有男运动员
人,女运动员
人,若采用分层抽样的方法在全体运动员中抽出
人进行体质测试,则抽到进行体质测试的男运动员的人数为______.



某地政府为了对房地产市场进行调控决策,统计部门对外来人口和当地人口进行了买房的心理预期调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表(不全):

已知样本中外来人口数与当地人口数之比为3:8.
(1)补全上述列联表;
(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,用
表示这3人指标之和,求
的分布列和数学期望.

已知样本中外来人口数与当地人口数之比为3:8.
(1)补全上述列联表;
(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,用


一个学校高一、高二、高三的学生人数之比为
,若用分层抽样法抽取容量为200的样本,则应从高三学生中抽取的人数是( )

A.40 | B.60 | C.80 | D.100 |
某地政府为了对房地产市场进行调控决策,统计部门对外来人口和当地人口进行了买房的心理预期调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表(不全):

已知样本中外来人口数与当地人口数之比为3:8.
(1)补全上述列联表;
(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,求选取的3人的指标之和大于5的概率.

已知样本中外来人口数与当地人口数之比为3:8.
(1)补全上述列联表;
(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,求选取的3人的指标之和大于5的概率.
在一次期末数学测试中,唐老师任教任教班级学生的成绩情况如下所示:

(1)根据上述表格,试估计唐老师所任教班级的学生在本次期末数学测试的平均成绩;
(2)现从成绩在
中按照分数段,采取分层抽样随机抽取
人,再在这
人中随机抽取
人作小题得分分析,求恰有
人的成绩在
上的概率.

(1)根据上述表格,试估计唐老师所任教班级的学生在本次期末数学测试的平均成绩;
(2)现从成绩在






某公司现有普通职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20人进行体检,如果采用分层抽样的方法,则普通职员、中级管理人员和高级管理人员应该各抽取人数为( )
A.16,3,1 | B.16,2,2 | C.8,15,7 | D.12,5,3 |