- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为维护交通秩序,防范电动自行车被盗,天津市公安局决定,开展二轮电动自行车免费登记、上牌照工作.电动自行车牌照分免费和收费(安装防盗装置)两大类,群众可以 自愿选择安装.已知甲、乙、丙三个不同类型小区的人数分别为15000,15000,20000.交管部门为了解社区居民意愿,现采用分层抽样的方法从中抽取10人进行电话访谈.
(Ⅰ)应从甲小区和丙小区的居民中分别抽取多少人?
(Ⅱ)设从甲小区抽取的居民为
,丙小区抽取的居民为
.现从甲小区和丙小区已抽取的居民中随机抽取2人接受问卷调查.
(ⅰ)试用所给字母列举出所有可能的抽取结果;
(ⅱ)设
为事件“抽取的2人来自不同的小区”,求事件
发生的概率.
(Ⅰ)应从甲小区和丙小区的居民中分别抽取多少人?
(Ⅱ)设从甲小区抽取的居民为


(ⅰ)试用所给字母列举出所有可能的抽取结果;
(ⅱ)设


某公司有350名员工参加了今年的年度考核.为了了解这350名员工的考核成绩,公司决定从中抽取50名员工的考核成绩进行统计分析.在这个问题中,50名员工的考核成绩是( )
A.总体 | B.样本容量 | C.个体 | D.样本 |
某校高三年级共有学生900人,将其编号为1,2,3,…,900并从小到大依次排列,现用系统抽样的方法从中抽取一个容量为45的样本,若抽取的第一个样本编号为5,则第三个样本的编号为( )
A.15 | B.25 | C.35 | D.45 |
2017年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速
分成六段:
,
,
,
,
,
后得到如图的频率分布直方图.

(1)调查公司在采样中,用到的是什么抽样方法?
(2)求这40辆小型车辆车速的众数、中位数及平均数的估计值;
(3)若从车速在
的车辆中任抽取2辆,求车速在
的车辆至少有一辆的概率.








(1)调查公司在采样中,用到的是什么抽样方法?
(2)求这40辆小型车辆车速的众数、中位数及平均数的估计值;
(3)若从车速在


已知一工厂生产了某种产品700件,该工厂对这些产品进行了安全和环保这两个性能的质量检测.工厂决定利用随机数表法从中抽取100件产品进行抽样检测,现将700件产品按001,002,…,700进行编号;
(1)如果从第8行第4列的数开始向右读,请你依次写出最先检测的3件产品的编号;
(下面摘取了随机数表的第7~9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100件产品的安全性能和环保性能的质量检测结果如下表:
检测结果分为优等、合格、不合格三个等级,横向和纵向分别表示安全性能和环保性能.若在该样本中,产品环保性能是优等的概率为
,求
,
的值.
(3)已知
,
,求在安全性能不合格的产品中,环保性能为优等的件数比不合格的件数少的概率.
(1)如果从第8行第4列的数开始向右读,请你依次写出最先检测的3件产品的编号;
(下面摘取了随机数表的第7~9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100件产品的安全性能和环保性能的质量检测结果如下表:
检测结果分为优等、合格、不合格三个等级,横向和纵向分别表示安全性能和环保性能.若在该样本中,产品环保性能是优等的概率为



件数 | 环保性能 | |||
优等 | 合格 | 不合格 | ||
安全性能 | 优等 | 6 | 20 | 5 |
合格 | 10 | 18 | 6 | |
不合格 | ![]() | 4 | ![]() |
(3)已知


某中学为弘扬优良传统,展示80年来的办学成果,特举办“建校80周年教育成果展示月”活动.现在需要招募活动开幕式的志愿者,在众多候选人中选取100名志愿者,为了在志愿者中选拔出节目主持人,现按身高分组,得到的频率分布表如图所示.

(1)请补充频率分布表中空白位置相应数据,再在答题纸上完成下列频率分布直方图;
(2)为选拔出主持人,决定在第3、4、5组中用分层抽样抽取6人上台,求第3、4、5组每组各抽取多少人?
(3)在(2)的前提下,主持人会在上台的6人中随机抽取2人表演诗歌朗诵,求第3组至少有一人被抽取的概率?
参考公式:
.


(1)请补充频率分布表中空白位置相应数据,再在答题纸上完成下列频率分布直方图;
(2)为选拔出主持人,决定在第3、4、5组中用分层抽样抽取6人上台,求第3、4、5组每组各抽取多少人?
(3)在(2)的前提下,主持人会在上台的6人中随机抽取2人表演诗歌朗诵,求第3组至少有一人被抽取的概率?
参考公式:

某市化工厂三个车间共有工人1000名,各车间男、女工人数如下表:已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0.15.
(1)求x的值.
(2)现用分层抽样的方法在全厂抽取50名工人,则应在第三车间抽取多少名工人?
| 第一车间 | 第二车间 | 第三车间 |
女工 | 173 | 100 | y |
男工 | 177 | x | z |
(1)求x的值.
(2)现用分层抽样的方法在全厂抽取50名工人,则应在第三车间抽取多少名工人?
“荆、荆、襄、宜七校联考”正在如期开展,组委会为了解各所学校学生的学情,欲从四地选取200人作样本开展调研.若来自荆州地区的考生有1000人,荆门地区的考生有2000人,襄阳地区的考生有3000人,宜昌地区的考生有2000人.为保证调研结果相对准确,下列判断正确的有( )
①用分层抽样的方法分别抽取荆州地区学生25人、荆门地区学生50人、襄阳地区学生75人、宜昌地区学生50人;
②可采用简单随机抽样的方法从所有考生中选出200人开展调研;
③宜昌地区学生小刘被选中的概率为
;
④襄阳地区学生小张被选中的概率为
.
①用分层抽样的方法分别抽取荆州地区学生25人、荆门地区学生50人、襄阳地区学生75人、宜昌地区学生50人;
②可采用简单随机抽样的方法从所有考生中选出200人开展调研;
③宜昌地区学生小刘被选中的概率为

④襄阳地区学生小张被选中的概率为

A.![]() | B.![]() | C.![]() | D.![]() |
某医疗器械公司在全国共有
个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这
个销售点的年销量绘制出如下的频率分布直方图.

(1)完成年销售任务的销售点有多少个?
(2)若用分层抽样的方法从这
个销售点中抽取容量为
的样本,求该五组
,
,
,
,
,(单位:千台)中每组分别应抽取的销售点数量.
(3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取
个,求这两个销售点不在同一组的概率.



(1)完成年销售任务的销售点有多少个?
(2)若用分层抽样的方法从这







(3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取

有60件产品,编号为01至60,现从中抽取5件检验,用系统抽样的方法所确定的抽样编号是()
A.5, 17, 29, 41, 53 | B.5, 12, 31, 39, 57 |
C.5, 15, 25, 35, 45 | D.5, 10, 15, 20, 25 |