- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着经济的发展,个人收入的提高.自2018年10月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:

(1)小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收入比调整前增加了多少?
(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

先从收入在[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,求两个宣讲员不全是同一收入人群的概率;

(1)小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收入比调整前增加了多少?
(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

先从收入在[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,求两个宣讲员不全是同一收入人群的概率;
某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为100的样本,则应从高二年级抽取学生人数__________名.
总体由编号为01,02,…,19,20共20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )


A.12 | B.07 | C.15 | D.16 |
为创建文明城市,共建美好家园,某市教育局拟从3000名小学生,2500名初中生和1500名高中生中抽取700人参与“城市文明知识”问卷调查活动,应采用的最佳抽样方法是( )
A.简单随机抽样法 | B.分层抽样法 |
C.系统抽样法 | D.简单随机抽样法或系统抽样法 |
某中学共有1000名学生,其中高一年级350人,该校为了了解本校学生视力情况,用分层抽样的方法从该校学生中抽出一个容量为100的样本进行调查,则应从高一年级抽取的人数为( )
A.20 | B.25 | C.30 | D.35 |
2018年11月5日上午,首届中国国际进口博览会拉开大幕,这是中国也是世界上首次以进口为主题的国家级博览会,本次博览会包括企业产品展、国家贸易投资展,其中企业产品展分为7个展区,每个展区统计了备受关注百分比,如下表:
备受关注百分比指:一个展区中受到所有相关人士关注
简称备受关注
的企业数与该展区的企业数的比值.
(1)从企业产品展7个展区的企业中随机选取1家,求这家企业是选自“智能及高端装备”展区备受关注的企业的概率;
(2)某电视台采用分层抽样的方法,在“消费电子及家电”展区备受关注的企业和“医疗器械及医药保健”展区备受关注的企业中抽取6家进行了采访,若从受访企业中随机抽取2家进行产品展示,求恰有1家来自于“医疗器械及医药保健”展区的概率.
展区类型 | 智能及高端装备 | 消费电子及家电 | 汽车 | 服装服饰及日用消费品 | 食品及农产品 | 医疗器械及医药保健 | 服务贸易 |
展区的企业数![]() ![]() | 400 | 60 | 70 | 650 | 1670 | 300 | 450 |
备受关注百分比 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
备受关注百分比指:一个展区中受到所有相关人士关注


(1)从企业产品展7个展区的企业中随机选取1家,求这家企业是选自“智能及高端装备”展区备受关注的企业的概率;
(2)某电视台采用分层抽样的方法,在“消费电子及家电”展区备受关注的企业和“医疗器械及医药保健”展区备受关注的企业中抽取6家进行了采访,若从受访企业中随机抽取2家进行产品展示,求恰有1家来自于“医疗器械及医药保健”展区的概率.
2018年9月,某校高一年级新入学有360名学生,其中200名男生,160名女生.学校计划为家远的高一新生提供5间男生宿舍和4间女生宿舍,每间宿舍可住2名同学.该校“数学与统计”社团的同学为了解全体高一学生家庭居住地与学校的距离情况,按照性别进行分层抽样,其中共抽取40名男生家庭居住地与学校的距离数据(单位:km)如下:
(1)根据以上样本数据推断,若男生甲家庭居住地与学校距离为8.3km,他是否能住宿?说明理由;
(2)通过计算得到男生样本数据平均值为5.1km,女生样本数据平均值为4.875km,求所有样本数据的平均值;
(3)已知能够住宿的女生中有一对双胞胎,如果随机分配宿舍,求双胞胎姐妹被分到同一宿舍的概率.
5 | 6 | 7 | 7.5 | 8 | 8.4 | 4 | 3.5 | 4.5 | 4.3 |
5 | 4 | 3 | 2.5 | 4 | 1.6 | 6 | 6.5 | 5.5 | 5.7 |
3.1 | 5.2 | 4.4 | 5 | 6.4 | 3.5 | 7 | 4 | 3 | 3.4 |
6.9 | 4.8 | 5.6 | 5 | 5.6 | 6.5 | 3 | 6 | 7 | 6.6 |
(1)根据以上样本数据推断,若男生甲家庭居住地与学校距离为8.3km,他是否能住宿?说明理由;
(2)通过计算得到男生样本数据平均值为5.1km,女生样本数据平均值为4.875km,求所有样本数据的平均值;
(3)已知能够住宿的女生中有一对双胞胎,如果随机分配宿舍,求双胞胎姐妹被分到同一宿舍的概率.
已知某公司按照工作年限发放年终奖并且进行年终表彰.若该公司有工作10年以上的员工100人,工作5-10年的员工400人,工作0-5年的员工200人,现按照工作年限进行分层抽样,在公司的所有员工中抽取28人作为员工代表上台接受表彰,则工作5-10年的员工代表有( )
A.8人 | B.16人 | C.4人 | D.24人 |
某校为了解学生的身体素质情况,采用按年级分层抽样的方法,从高一、高二、高三学生中抽取一个300人的样本进行调查,已知高一、高二、高三学生人数之比为
,抽取的样本中高一学生为120人,则实数
的值为__________.


为节能环保,推进新能源汽车推广和应用,对购买纯电动汽车的用户进行财政补贴. 某地补贴政策如下(
表示纯电续航里程):

有
三个纯电动汽车4s店分别销售不同品牌的纯电动汽车,在一个月内它们的销售情况如下: (每位客户只能购买一辆纯电动汽车)

(Ⅰ)从上述购买纯电动汽车的客户中随机选一人,求此人购买的是
店纯电动汽车且享受补贴不低于3.5万元的概率;
(Ⅱ)从购买
店纯电动汽车的客户中按分层抽样的方法随机选6人,再从这6人中随机选2人,进行使用满意度的调查,求这两人享受补贴恰好相同的概率;
(Ⅲ)分别用
表示购买
店和
店纯电动汽车客户享受补贴的平均值,比较
的大小.(只需写出结论)


有


(Ⅰ)从上述购买纯电动汽车的客户中随机选一人,求此人购买的是

(Ⅱ)从购买

(Ⅲ)分别用



