- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂对一批产品进行抽样检测,根据抽样检测后的产品净重(单位:g)数据绘制的频率分布直方图如图所示,已知产品净重的范围是区间[96,106],样本中净重在区间[96,100)的产品个数是24,则样本中净重在区间[98,104)的产品个数是 .

中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80 mg/100 ml(不含80)之间,属于酒后贺车;在80 mg /100 ml (含80)以上时,属醉酒贺车,对于酒后驾车和醉酒驾车的驾驶员公安机关将给予不同程度的处罚.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了250辆机动车,查出酒后驾车和醉酒贺车的驾驶员20人,下图是对这20人血液中酒精含量进行检查所得结果的频率分布直方图.

(Ⅰ)根据频率分布直方图,求:此次抽查的250人中,醉酒驾车的人数;
(Ⅱ)从血液酒精浓度在[70,90)范围内的驾驶员中任取2人,求恰有1人属于醉酒驾车的概率.

(Ⅰ)根据频率分布直方图,求:此次抽查的250人中,醉酒驾车的人数;
(Ⅱ)从血液酒精浓度在[70,90)范围内的驾驶员中任取2人,求恰有1人属于醉酒驾车的概率.
将甲、乙两名同学5次物理测验的成绩用茎叶图表示如图,若甲、乙两人成绩的中位数分别为
,则下列说法正确的是()



A.![]() |
B.![]() |
C.![]() |
D.![]() |
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归直线方程

表中有一个数据模糊不清,请你推断出该数据的值为______ .


表中有一个数据模糊不清,请你推断出该数据的值为______ .
某市居民1999~2003年货币收入


单位:亿元
年份 | 1999 | 2000 | 2001 | 2002 | 2003 |
货币收入![]() | 40 | 42 | 44 | 47 | 50 |
购买商品支出![]() | 33 | 34 | 36 | 39 | 41 |
(Ⅰ)画出散点图,判断x与Y是否具有相关关系;

(Ⅱ)已知

下列说法错误的是( )
A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系; |
B.线性回归方程对应的直线![]() ![]() ![]() |
C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高; |
D.在回归分析中,![]() ![]() |
从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的小长方形的高之比为1:3:6:4:2,最右边一组的频数是6,请结合直方图提供的信息,解答下列问题:

(1)样本的容量是多少?
(2)列出频率分布表;
(3)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率;
(4)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.

(1)样本的容量是多少?
(2)列出频率分布表;
(3)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率;
(4)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.
某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示如图,则甲、乙两班抽取的5名学生学分的中位数的和等于 .
