在2013年3月15日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:
价格x
9
9.5
10
10.5
11
销售量y
11
10
8
6
5
 
由散点图可知,销售量y与价格x之间有较好的线性相关关系,其线性回归直线方程是:,那么的值为 (  )
A.-24B.35.6C.40.5D.40
当前题号:1 | 题型:单选题 | 难度:0.99
在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160, 则中间一组(即第五组)的频数为()
A.12B.24C.36D.48
当前题号:2 | 题型:单选题 | 难度:0.99
已知xy之间的一组数据:
x
 
0
1
2
3
y
 
1
3
5
7
 
则y与x的线性回归方程为=bx+a必过( )
A.点B.点C.点D.点
当前题号:3 | 题型:单选题 | 难度:0.99
今年十一黄金周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:性别与对景区的服务是否满意单位:名
 


总计
满意
50
30
80
不满意
10
20
30
总计
60
50
110
 
(1)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?
(2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;
(3)根据以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关.
当前题号:4 | 题型:解答题 | 难度:0.99
某校从参加市联考的甲、乙两班数学成绩110分以上的同学中各随机抽取8人,将这16人的数学成绩编成如下茎叶图.

(Ⅰ)茎叶图中有一个数据污损不清(用△表示),若甲班抽出来的同学平均成绩为122分,试推算这个污损的数据是多少?
(Ⅱ)现要从成绩在130分以上的5位同学中选2位作数学学习方法介绍,请将所有可能的结果列举出来,并求选出的两位同学不在同一个班的概率.
当前题号:5 | 题型:解答题 | 难度:0.99
(文科)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
组号
分组
频数
频率
第一组
[230,235)
8
0.16
第二组
[235,240)

0.24
第三组
[240,245)
15

第四组
[245,250)
10
0.20
第五组
[250,255]
5
0.10
合计
50
1.00
 
(1)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.
当前题号:6 | 题型:解答题 | 难度:0.99
有一组统计数据共10个,它们是:,已知这组数据的平均数为6,则这组数据的方差为
当前题号:7 | 题型:填空题 | 难度:0.99
两个变量x,y与其线性相关系数r有下列说法
(1)若r>0,则x增大时,y也相应增大;
(2)若|r|越趋近于1,则x, y线性相关程度越强;
(3)若r=1或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上,其中正确的有(  )
A.①②B.②③C.①③D.①②③
当前题号:8 | 题型:单选题 | 难度:0.99
某班同学利用寒假在5个居民小区内选择两个小区逐户进行一次“低碳生活习惯”的调查,以计算每户的碳月排放量.若月排放量符合低碳标准的称为“低碳族”,否则称为“非低碳族”.若小区内有至少的住户属于“低碳族”,则称这个小区为“低碳小区”,否则称为“非低碳小区” .若备选的5个居民小区中有三个非低碳小区,两个低碳小区.

(1)求所选的两个小区恰有一个为“非低碳小区”的概率;
(2)假定选择的“非低碳小区”为小区,调查显示其“低碳族”的比例为1:2,数据如图1所示,经过大力宣传,三个月后又进行一次调查,数据如图2所示,问这时小区是否达到“低碳小区”的标准?
当前题号:9 | 题型:解答题 | 难度:0.99
某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是    
当前题号:10 | 题型:填空题 | 难度:0.99