- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2007名学生中抽取50名进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下2000人再按系统抽样的方法进行,则每人入选的机会()
A.不全相等 | B.均不相等 | C.都相等 | D.无法确定 |
甲,乙,丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图1,图2和图3,若
,
,
分别表示他们测试成绩的标准差,则





A.![]() | B.![]() |
C.![]() | D.![]() |
某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为
.现用分层抽样的方法抽出一个容量为
的样本,样本中A种型号的产品共有16件,那么此
( )



A.80 | B.90 | C.1 | D.120 |
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
注:
=
,
=
-
,
=
x+
则y关于x的线性回归方程为( )
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
注:









则y关于x的线性回归方程为( )
A.![]() | B.![]() |
C.![]() | D.![]() |
. 某校有学生
人,其中高一学生
人.为调查学生了解消防知识的现状,采用按年级分层抽样的方法,从该校学生中抽取一个
人的样本,那么样本中高一学生的人数为_____.



甲、乙两名篮球运动员在四场比赛中的得分数据以茎叶图记录如下:
(Ⅰ)求乙球员得分的平均数和方差;
(Ⅱ)分别从两人得分中随机选取一场的得分,求得分和Y的分布列和数学期望.
(注:方差s2
[(x1
)2+(x2
)2+…+(xn
)2]其中
为x1,x2,…xn的平均数)
(Ⅰ)求乙球员得分的平均数和方差;
(Ⅱ)分别从两人得分中随机选取一场的得分,求得分和Y的分布列和数学期望.
(注:方差s2






(本小题满分12分)
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)

某校90名专职教师的年龄状况如下表:
现拟采用分层抽样的方法从这90名专职教师中抽取6名老、中、青教师下乡支教一年.
(Ⅰ)求从表中三个年龄段中分别抽取的人数;
(Ⅱ)若从抽取的6个教师中再随机抽取2名到相对更加边远的乡村支教,计算这两名教师至少有一个年龄是35~50岁教师的概率。
年龄 | 35岁以下 | 35~50岁 | 50岁以上 |
人数 | 45 | 30 | 15 |
现拟采用分层抽样的方法从这90名专职教师中抽取6名老、中、青教师下乡支教一年.
(Ⅰ)求从表中三个年龄段中分别抽取的人数;
(Ⅱ)若从抽取的6个教师中再随机抽取2名到相对更加边远的乡村支教,计算这两名教师至少有一个年龄是35~50岁教师的概率。