- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从编号为1,2,…,79,80的80件产品中,采用系统抽样的方法抽取容量为5的样本,若编号为10的产品在样本中,则该样本中产品的最大编号为( )
A.72 | B.73 | C.74 | D.75 |
以下命题中,真命题有( )
①对两个变量
和
进行回归分析,由样本数据得到的回归方程
必过样本点的中心
;
②若数据
的方差为2,则
的方差为4;
③已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.
①对两个变量




②若数据


③已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.
A.①② | B.①③ | C.②③ | D.①②③ |
某市统计局就本地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示月收入在
,(单位:元).

(Ⅰ)估计居民月收入在
的概率;
(Ⅱ)根据频率分布直方图估计样本数据的中位数;


(Ⅰ)估计居民月收入在

(Ⅱ)根据频率分布直方图估计样本数据的中位数;
从某地区随机抽取100名高中男生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图).若要从各组内的男生中,用分层抽样的方法选取20人参加一项活动,则从
这一组中抽取的人数为 .


某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如下:
根据上图,对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( )
| | | | | 甲 | | 乙 | | | | | |
| | | 9 | 8 | 8 | 1 | 7 | 7 | 9 | 9 | | |
| | | 6 | 1 | 0 | 2 | 2 | 5 | 6 | 7 | 9 | 9 |
| | 5 | 3 | 2 | 0 | 3 | 0 | 2 | 3 | | | |
| | | 7 | 1 | 0 | 4 | | | | | | |
根据上图,对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( )
A.甲运动员得分的极差大于乙运动员得分的极差 |
B.甲运动员得分的的中位数大于乙运动员得分的的中位数 |
C.甲运动员的得分平均值大于乙运动员的得分平均值 |
D.甲运动员的成绩比乙运动员的成绩稳定 |
某学校三个社团的人员分布如下表(每名同学只参加一个社团)
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取
人,结果合唱社被抽出
人,则这三个社团人数共有_______________.
| 合唱社 | 粤曲社 | 书法社 |
高一 | 45 | 30 | ![]() |
高二 | 15 | 10 | 20 |
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取


.某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:
由表中数据算出线性回归方程
中的b≈-2.气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月毛衣的销售量约为_件.
(参考公式:
)
月平均气温x(![]() | 17 | 13 | 8 | 2 |
月销售量y(件) | 24 | 33 | 40 | 55 |
由表中数据算出线性回归方程

(参考公式:

对甲、乙的学习成绩进行抽样分析,各抽五门功课,得到的观测值如下:
问:甲、乙谁的平均成绩较好?谁的各门功课发展较平衡?( )
甲 | 60 | 80 | 70 | 90 | 70 |
乙 | 80 | 60 | 70 | 80 | 75 |
问:甲、乙谁的平均成绩较好?谁的各门功课发展较平衡?( )
A.甲的平均成绩较好,乙的各门功课发展较平衡 |
B.甲的平均成绩较好,甲的各门功课发展较平衡 |
C.乙的平均成绩较好,甲的各门功课发展较平衡 |
D.乙的平均成绩较好,乙的各门功课发展较平衡 |