已知变量之间的线性回归方程为,且变量之间的一-组相关数据如下表所示,则下列说法错误的是( )










 
A.可以预测,当时,B.
C.变量之间呈负相关关系D.该回归直线必过点
当前题号:1 | 题型:单选题 | 难度:0.99
“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:),经统计,树苗的高度均在区间内,将其按分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于的为优质树苗.

(1)求图中的值;
(2)已知所抽取的这120株树苗来自于两个试验区,部分数据如下列联表:
 
试验区
试验区
合计
优质树苗
 
20
 
非优质树苗
60
 
 
合计
 
 
 
 
将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与两个试验区有关系,并说明理由;
(3)通过用分层抽样方法从试验区被选中的树苗中抽取5株,若从这5株树苗中随机抽取2株,求优质树苗和非优质树苗各有1株的概率.
附:参考公式与参考数据:
其中

0.010
0.005
0.001

6.635
7.879
10.828
 
当前题号:2 | 题型:解答题 | 难度:0.99
“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:),经统计,树苗的高度均在区间内,将其按分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于的为优质树苗.

(1)求图中的值;
(2)已知所抽取的这120株树苗来自于两个试验区,部分数据如列联表:
 
试验区
试验区
合计
优质树苗
 
20
 
非优质树苗
60
 
 
合计
 
 
 
 
将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与两个试验区有关系,并说明理由;
(3)用样本估计总体,若从这批树苗中随机抽取4株,其中优质树苗的株数为,求的分布列和数学期望.
附:参考公式与参考数据:,其中

0.010
0.005
0.001

6.635
7.879
10.828
 
当前题号:3 | 题型:解答题 | 难度:0.99
某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17),将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,如图是根据实验数据制成的频率分布直方图,已知第一组与第二组共有20人,则第三组中的人数为 _________
当前题号:4 | 题型:填空题 | 难度:0.99
某个地区计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水的年入流量(年入流量:一年内上游来水与库区降水之和,单位:十亿立方米)都在4以上,其中,不足8的年份有10年,不低于8且不超过12的年份有35年,超过12的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过12的概率;
(2)若水的年入流量与其蕴含的能量(单位:百亿万焦)之间的部分对应数据为如下表所示:
年入流量
6
8
10
12
14
蕴含的能量
1.5
2.5
3.5
5
7.5
 
用最小二乘法求出关于的线性回归方程;(回归方程系数用分数表示)
(3)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:
年入流量



发电机最多可运行台数
1
2
3
 
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
附:回归方程系数公式:.
当前题号:5 | 题型:解答题 | 难度:0.99
随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.

(Ⅰ)求a的值;
(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;
(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).
当前题号:6 | 题型:解答题 | 难度:0.99
某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:
等级
不合格
合格
得分




频数
6

24

 

(Ⅰ)求的值;
(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为,求的分布列及数学期望
(Ⅲ)某评估机构以指标,其中表示的方差)来评估该校安全教育活动的成效.若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?
当前题号:7 | 题型:解答题 | 难度:0.99
在某批次的某种灯泡中,随机地抽取个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于天的灯泡是优等品,寿命小于天的灯泡是次品,其余的灯泡是正品.
寿命(天)
频数
频率















合计


 
(1)根据频率分布表中的数据,写出的值;
(2)某人从灯泡样品中随机地购买了个,如果这个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求的最小值;
(3)某人从这个批次的灯泡中随机地购买了个进行使用,若以上述频率作为概率,用表示此人所购买的灯泡中次品的个数,求的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
《厉害了,我的国》是2018年在我国各影院上映的一部非常火的电影纪录片,该部影片主要讲述了我国近几年的发展现状和成就,影片通过讲述中国故事,刻画中国面貌,弘扬了中国精神,引起了国民的高度关注,上映仅半个月影片票房就突破了3亿元,刷新了我国纪录片的票房纪录,某市一电影院为了解该影院观看《厉害了,我的国》的观众的年龄构成情况,随机抽取了40名观众数据统计如表:
年龄/岁
[10,20)
[20,30)
[30,40)
[40,50)
[50,60)
[60,70)
[70,80)
人数
6
8
12
6
4
2
2
 
(1)求所调查的40名观众年龄的平均数和中位数;
(2)该电影院决定采用抽奖方式来提升观影人数,将《厉害了,我的国》的电影票票价提高20元/张,并允许购买电影票的观众抽奖3次,中奖1次、2次、3次分别奖现金20元、30元、60元,设观众每次中奖的概率均为,则观众在3次抽奖中所获得的奖金总额的数学期望是多少元(结果保留整数)?
当前题号:9 | 题型:解答题 | 难度:0.99
某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示.分别表示甲、乙两班各自5名学生学分的标准差,则_______.(填“”“<”或“=”)     
当前题号:10 | 题型:填空题 | 难度:0.99