- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某中学高一年级有学生600人,高二年级有学生750人,高三年级有学生690人,现用分层抽样的方法从这三个年级学生中抽取68人进行某项研究,则应从高二年级抽取的学生的人数为( )
A.20 | B.23 | C.25 | D.29 |
某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为
五个小组(所调查的芯片得分均在
内),得到如图所示的频率分布直方图,其中
.

(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替).
(2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.




(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替).
(2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.
某地区实施“光盘行动”以后,某自助啤酒吧也制定了自己的行动计划,进店的每一位客人需预交50元,啤酒根据需要自己用量杯量取.结账时,剩余酒量不足1升的,按0升计算(如剩余1.7升,记为剩余1升).

统计表明饮酒量与人数有很强的线性相关关系,下面是随机采集的5组数据
(其中
表示饮酒人数,
(升)表示饮酒量):
,
,
,
,
.
(1)求由这5组数据得到的
关于
的回归直线方程;
(2)小王约了5位朋友一同来饮酒,小王及朋友用量杯共量取了8升啤酒,这时,酒吧服务生对小王说,根据他的经验,小王和朋友量取的啤酒可能喝不完,可以考虑再邀请一个或两个朋友一起来饮酒,会更划算.试问小王是否该接受服务生的建议.
参考数据:回归直线的方程是
,其中
,
.

统计表明饮酒量与人数有很强的线性相关关系,下面是随机采集的5组数据








(1)求由这5组数据得到的


(2)小王约了5位朋友一同来饮酒,小王及朋友用量杯共量取了8升啤酒,这时,酒吧服务生对小王说,根据他的经验,小王和朋友量取的啤酒可能喝不完,可以考虑再邀请一个或两个朋友一起来饮酒,会更划算.试问小王是否该接受服务生的建议.
参考数据:回归直线的方程是



某中学的兴趣小组在某座山测得海拔高度、气压、沸点的六组数据,并绘制出如图所示的散点图,下列说法错误的是( )


A.气压与海拔高度呈负相关 | B.沸点与气压呈正相关 |
C.沸点与海拔高度呈正相关 | D.沸点与海拔高度的相关性很强 |
如图所示的茎叶图记录了甲、乙两名篮球运动员在某几场比赛的得分.已知甲得分的中位数为17,乙得分的均平数为14,则式子
的值是( )



A.7 | B.9 |
C.10 | D.12 |
某单位为了解其后勤部门的服务情况,随机访问了40名其他部门的员工,根据这40名员工对后勤部门的评分情况,绘制了频率分布直方图如图所示,其中样本数据分组区间为
,
,
,
,
,
.

(1)求
的值;
(2)估计该单位其他部门的员工对后勤部门的评分的中位数;
(3)以评分在
的受访者中,随机抽取2人,求此2人中至少有1人对后勤部门评分在
内的概率.







(1)求

(2)估计该单位其他部门的员工对后勤部门的评分的中位数;
(3)以评分在


某研究机构对春节燃放烟花爆竹的天数
与雾霾天数
进行统计分析,给出下表数据:
(1)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程;
(2)试判断
与
之间是正相关还是负相关,并预测燃放烟花爆竹的天数为9天时的雾霾天数约为几天?
(参考公式:
,
.)


![]() | 2 | 3 | 5 | 7 | 8 |
![]() | 1 | 2 | 2 | 4 | 6 |
(1)请根据上表提供的数据,用最小二乘法求出


(2)试判断


(参考公式:


为了解运动健身减肥的效果,某健身房调查了20名肥胖者,健身之前他们的体重情况如三维饼图(1)所示,经过四个月的健身后,他们的体重情况如三维饼图(2)所示.对比健身前后,关于这20名肥胖者,下面结论不正确的是( )


A.他们健身后,体重在区间[90kg,100kg)内的人数不变 |
B.他们健身后,体重在区间[100kg,110kg)内的人数减少了4人 |
C.他们健身后,这20位健身者体重的中位数位于[90kg,100kg) |
D.他们健身后,原来体重在[110kg,120kg]内的肥胖者体重都至少减轻了10kg |
甲、乙两名同学在本学期的六次考试成绩统计如图,甲、乙两组数据的平均值分别为
、
,则( )




A.每次考试甲的成绩都比乙的成绩高 | B.甲的成绩比乙稳定 |
C.![]() ![]() | D.甲的成绩的极差大于乙的成绩的极差 |