- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
根据下图给出的
年至
年某地区社会消费品零售额及增长速度情况.以下结论正确的是( )




A.![]() |
B.![]() |
C.![]() |
D.![]() |
某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是( )
A.分层抽样法,系统抽样法 | B.分层抽样法,简单随机抽样法 |
C.系统抽样法,分层抽样法 | D.简单随机抽样法,分层抽样法 |
某学校微信公众号收到非常多的精彩留言,学校从众多留言者中抽取了100人参加“学校满意度调查”,其留言者年龄集中在
之间,根据统计结果,做出频率分布直方图如下:

(1)求这100位留言者年龄的平均数和中位数;
(2)学校从参加调查的年龄在
和
的留言者中,按照分层抽样的方法,抽出了6人参加“精彩留言”经验交流会,赠与年龄在
的留言者每人一部价值1000元的手机,年龄在
的留言者每人一套价值700元的书,现要从这6人中选出3人作为代表发言,求这3位发言者所得纪念品价值超过2300元的概率.


(1)求这100位留言者年龄的平均数和中位数;
(2)学校从参加调查的年龄在




某市公交公司为了鼓励广大市民绿色出行,计划在某个地段增设一个起点站,为了研究车辆发车的间隔时间
与乘客等候人数
之间的关系,经过抽样调查五个不同时段的情形,统计得到如下数据:
调查小组先从这5组数据中选取其中的4组数据求得线性回归方程,再用剩下的1组数据进行检验,检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数
,再求
与实际等候人数
的差,若差值的绝对值不超过1,则称所求的回归方程是“理想回归方程”.
(1)若选取的是前4组数据,求
关于
的线性回归方程
,并判断所求方程是否是“理想回归方程”;
(2)为了使等候的乘客不超过38人,试用所求方程估计间隔时间最多可以设为多少分钟?
参考公式:用最小二乘法求线性回归方程
的系数公式:
,
.


间隔时间(![]() | 8 | 10 | 12 | 14 | 16 |
等候人数(![]() | 16 | 19 | 23 | 26 | 29 |
调查小组先从这5组数据中选取其中的4组数据求得线性回归方程,再用剩下的1组数据进行检验,检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数



(1)若选取的是前4组数据,求



(2)为了使等候的乘客不超过38人,试用所求方程估计间隔时间最多可以设为多少分钟?
参考公式:用最小二乘法求线性回归方程



某数学老师身高177cm,他爷爷,父亲儿子的身高分别是174cm,171cm和183cm,因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高是( )附:线性回归方程
中系数计算公式分别为:
,
,其中
、
为样本均值.





A.185cm | B.186cm | C.187cm | D.188cm |
在抽取彩票“双色球”中奖号码时,有33个红色球,每个球的编号分别为01,02,…,33.一位彩民用随机数表法选取6个号码作为6个红色球的编号,选取方法是从下面的随机数表中第1行第6列的数字3开始,从左向右读数,则依次选出的第3个红色球的编号为( )
49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 |
57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 |
A.21 | B.32 | C.09 | D.20 |
随着经济全球化、信息化的发展,企业之间的竞争从资源的争夺转向人才的竞争,吸引、留住培养和用好人才成为人力资源管理的战略目标和紧迫任务,在此背景下,某信息网站在15个城市中对刚毕业的大学生的月平均收入薪资和月平均期望薪资做了调查,数据如下图所示.

(1)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收入薪资高于8500元的城市的概率;
(2)现有2名大学毕业生在这15座城市中各随机选择一座城市就业,且2人的选择相互独立,记X为选中月平均收入薪资高于8500元的城市的人数,求X的分布列和数学期望E(X);
(3)记图中月平均收入薪资对应数据的方差为
,月平均期望薪资对应数据的方差为
,判断
与
的大小(只需写出结论)

(1)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收入薪资高于8500元的城市的概率;
(2)现有2名大学毕业生在这15座城市中各随机选择一座城市就业,且2人的选择相互独立,记X为选中月平均收入薪资高于8500元的城市的人数,求X的分布列和数学期望E(X);
(3)记图中月平均收入薪资对应数据的方差为




某医院体检中心为回馈大众,推出优惠活动:对首次参加体检的人员,按200元/次收费,并注册成为会员,对会员的后续体检给予相应优惠(本次即第一次),标准如下:
该体检中心从所有会员中随机选取了100位对他们在本中心参加体检的次数进行统计,得到数据如下表:
假设该体检中心为顾客体检一次的成本费用为150元,根据所给数据,解答下列问题:
(1)已知某顾客在此体检中心参加了3次体检,求这3次体检,该体检中心的平均利润;
(2)该体检中心要从这100人里至少体检3次的会员中,按体检次数用分层抽样的方法抽出5人,再从这5人中抽取2人发放纪念品,求抽到的2人中恰有1人体检3次的概率.
体检次序 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次及以上 |
收费比例 | 1 | 0.95 | 0.90 | 0.85 | 0.8 |
该体检中心从所有会员中随机选取了100位对他们在本中心参加体检的次数进行统计,得到数据如下表:
体检次数 | 一次 | 两次 | 三次 | 四次 | 五次及以上 |
频数 | 60 | 20 | 12 | 4 | 4 |
假设该体检中心为顾客体检一次的成本费用为150元,根据所给数据,解答下列问题:
(1)已知某顾客在此体检中心参加了3次体检,求这3次体检,该体检中心的平均利润;
(2)该体检中心要从这100人里至少体检3次的会员中,按体检次数用分层抽样的方法抽出5人,再从这5人中抽取2人发放纪念品,求抽到的2人中恰有1人体检3次的概率.
已知某校中小学生人数和近视情况分别如图所示.为了解该校中小学生的近视形成原因,用分层抽样的方式从中抽取一个容量为50的样本进行调查.

(1)求样本中高中生、初中生及小学生的人数;
(2)从该校初中生和高中生中各随机抽取1名学生,用频率估计概率,求恰有1名学生近视的概率;
(3)假设高中生样本中恰有5名近视学生,从高中生样本中随机抽取2名学生,用
表示2名学生中近视的人数,求随机变量
的分布列和数学期望.

(1)求样本中高中生、初中生及小学生的人数;
(2)从该校初中生和高中生中各随机抽取1名学生,用频率估计概率,求恰有1名学生近视的概率;
(3)假设高中生样本中恰有5名近视学生,从高中生样本中随机抽取2名学生,用


某学校为了解学生的数学学习情况,从甲、乙两班各抽取了7名同学某次数学考试的成绩,绘制成如图所示的茎叶图,则这两组数据不同的是( )


A.平均数 | B.方差 | C.中位数 | D.极差 |