- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校高一、高二年级共有1800人,现按照分层抽样的方法,抽取90人作为样本进行某项调查.若样本中高一年级学生有42人,则该校高一年级学生共有( )
A.420人 | B.480人 | C.840人 | D.960人 |
某手机厂商在销售某型号手机时开展“手机碎屏险”活动.用户购买该型号手机时可选购“手机碎屏险”,保费为
元,若在购机后一年内发生碎屏可免费更换一次屏幕,为了合理确定保费
的值,该手机厂商进行了问卷调查,统计后得到下表(其中
表示保费为
元时愿意购买该“手机碎屏险”的用户比例):

(1)根据上面的数据计算得
,求出
关于
的线性回归方程;
(2)若愿意购买该“手机碎屏险”的用户比例超过
,则手机厂商可以获利,现从表格中的
种保费任取
种,求这
种保费至少有一种能使厂商获利的概率.
附:回归方程
中斜率和截距的最小二乘估计分别为
,





(1)根据上面的数据计算得



(2)若愿意购买该“手机碎屏险”的用户比例超过




附:回归方程



空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:

(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.
![]() 日均浓度 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
空气质量类型 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:

(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.
某地区有800名学员参加交通法规考试,考试成绩的频率分布直方图如图所示,其中成绩分组区间是:
,
,
,
,
,规定90分及以上为合格:

(1)求图中a的值;
(2)根据频率分布直方图估计该地区学员交通法规考试合格的概率;
(3)若三个人参加交通法规考试,估计这三个人至少有两人合格的概率.






(1)求图中a的值;
(2)根据频率分布直方图估计该地区学员交通法规考试合格的概率;
(3)若三个人参加交通法规考试,估计这三个人至少有两人合格的概率.
春节期间,受烟花爆竹集中燃放影响,我国多数城市空气中
浓度快速上升,特别是在大气扩散条件不利的情况下,空气质量在短时间内会迅速恶化
年除夕18时和初一2时,国家环保部门对8个城市空气中
浓度监测的数据如表
单位:微克
立方米
.
Ⅰ
求这8个城市除夕18时空气中
浓度的平均值;
Ⅱ
环保部门发现:除夕18时到初一2时空气中
浓度上升不超过100的城市都是“禁止燃放烟花爆竹“的城市,浓度上升超过100的城市都未禁止燃放烟花爆竹
从以上8个城市中随机选取3个城市组织专家进行调研,记选到“禁止燃放烟花爆竹”的城市个数为X,求随机变量y的分布列和数学期望;
Ⅲ
记2017年除夕18时和初一2时以上8个城市空气中
浓度的方差分别为
和
,比较
和
的大小关系
只需写出结果
.






| 除夕18时![]() | 初一2时![]() |
北京 | 75 | 647 |
天津 | 66 | 400 |
石家庄 | 89 | 375 |
廊坊 | 102 | 399 |
太原 | 46 | 115 |
上海 | 16 | 17 |
南京 | 35 | 44 |
杭州 | 131 | 39 |
















某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制如图所示频率分布直方图,已知中间三组的人数可构成等差数列.
(1)求
的值;
(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列
列联表,并判断是否有
的把握认为消费金额与性别有关?
(3)分析人员对抽取对象每周的消费金额
与年龄
进一步分析,发现他们线性相关,得到回归方程
.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)
列联表
临界值表:
,其中

(1)求

(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列


(3)分析人员对抽取对象每周的消费金额




| 男性 | 女性 | 合计 |
消费金额![]() | | | |
消费金额![]() | | | |
合计 | | | |
临界值表:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |


根据一组数据(24,25),(26,25),(26,26),(26,27),(28,27),用最小二乘法建立的回归直线方程为
=kx+13,则k=( )

A.2 | B.4 | C.![]() | D.![]() |
图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为
,
,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )





A.10 | B.6 | C.7 | D.16 |