- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市在开展创建“全国文明城市”活动中,工作有序扎实,成效显著,尤其是城市环境卫生大为改观,深得市民好评.“创文”过程中,某网站推出了关于环境治理和保护问题情况的问卷调查,现从参与问卷调查的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.

(1)求出a的值;
(2)若已从年龄较小的第1,2组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,设第2组抽到
人,求随机变量
的分布列及数学期望
.






(1)求出a的值;
(2)若已从年龄较小的第1,2组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,设第2组抽到



“二万五千里长征”是1934年10月到1936年10月中国工农红军进行的一次战略转移,是人类历史上的伟大奇迹,向世界展示了中国工农红军的坚强意志,在期间发生了许多可歌可泣的英雄故事.在***建党
周年之际,某中学组织了“长征英雄事迹我来讲”活动,已知该中学共有高中生
名,用分层抽样的方法从该校高中学生中抽取一个容量为
的样本参加活动,其中高三年级抽了
人,高二年级抽了
人,则该校高一年级学生人数为( )





A.![]() | B.![]() | C.![]() | D.![]() |
某学校为了解本校文、理科学生的学业水平模拟测试数学成绩情况,分别从理科班学生中随机抽取
人的成绩得到样本甲,从文科班学生中随机抽取
人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:

甲样本数据直方图

乙样本数据直方图
已知乙样本中数据在
的有
个.
(1)求
和乙样本直方图中
的值;
(2)试估计该校理科班学生本次模拟测试数学成绩的平均值和文科班学生本次模拟测试数学成绩的中位数(同一组中的数据用该组区间中点值为代表).



甲样本数据直方图

乙样本数据直方图
已知乙样本中数据在


(1)求


(2)试估计该校理科班学生本次模拟测试数学成绩的平均值和文科班学生本次模拟测试数学成绩的中位数(同一组中的数据用该组区间中点值为代表).
在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10日,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:
甲地:总体平均数为3,中位数为4;
乙地:总体平均数为1,总体方差大于0;
丙地:总体平均数为2,总体方差为3;
丁地:中位数为2,众数为3;
则甲、乙、两、丁四地中,一定没有发生大规模群体感染的是( )
甲地:总体平均数为3,中位数为4;
乙地:总体平均数为1,总体方差大于0;
丙地:总体平均数为2,总体方差为3;
丁地:中位数为2,众数为3;
则甲、乙、两、丁四地中,一定没有发生大规模群体感染的是( )
A.甲地 | B.乙地 | C.丙地 | D.丁地 |
中医药,是包括汉族和少数民族医药在内的我国各民族医药的统称,是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华民族的瑰宝.某科研机构研究发现,某品种中医药的药物成分甲的含量
(单位:克)与药物功效
(单位:药物单位)之间具有关系
.检测这种药品一个批次的5个样本,得到成分甲的平均值为4克,标准差为
克,则估计这批中医药的药物功效的平均值为( )




A.22药物单位 | B.20药物单位 | C.12药物单位 | D.10药物单位 |
已知组数据
,
,…,
的平均数为2,方差为5,则数据2
+1,2
+1,…,2
+1的平均数
与方差
分别为( )








A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如下表:

对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.
(1)求y关于t的线性回归方程;
(2)预测该地区2016年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,

对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.
(1)求y关于t的线性回归方程;
(2)预测该地区2016年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:


某公司决定投人资金进行产品研发以提高产品售价.已知每件产品的制造成本为
元,若投人的总的研发成本
(万元)与每件产品的销售单价
(元)的关系如下表:

(1)求
关于
的线性回归方程;
(2)市场部发现,销售单价
(元)与销量
(件)存在以下关系:
,
.根据(1)中结果预测,当
为何值时,可获得最高的利润?
附:
,
.




(1)求


(2)市场部发现,销售单价





附:


为了解观众对某综艺节目的评价情况,栏目组随机抽取了
名观众进行评分调查(满分
分),并统计得到如图所示的频率分布直方图,以下说法错误的是( )




A.参与评分的观众评分在![]() ![]() |
B.观众评分的众数约为![]() |
C.观众评分的平均分约为![]() |
D.观众评分的中位数约为![]() |
2019年4月20日,辽宁省人民政府公布了“
”新高考方案,方案中“2”指的是在思想政治、地理、化学、生物4门中选择2门.“2”中记入高考总分的单科成绩是由原始分转化得到的等级分,学科高考原始分在全省的排名越靠前,等级分越高.小明同学是2018级的学生.已确定了必选地理且不选政治,为确定另选一科,小明收集并整理了生物与化学近10大联考的成绩百分比排名数据x(如
的含义是指在该次考试中,成绩高于小明的考生占参加该次考试的考生数的
)绘制茎叶图如下.

则由图中数据生物学科联考百分比排名的
分位数为________.从平均数的角度来看你认为小明更应该选择________.(填生物或化学)




则由图中数据生物学科联考百分比排名的
