- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某班对一次实验成绩进行分析,利用随机数表法抽取样本时,先将50个同学按01,02.03,…50进行编号,然后从随机数表第9行第11列的数开始向右读,则选出的第6个个体是( )(注:表为随机数表的第8行和第9行)
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
A.00 | B.13 | C.42 | D.44 |
小吴一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小吴一星期的鸡蛋开支占总开支的百分比为( )


A.1% | B.2% | C.3% | D.5% |
某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是
,则图中a的值为( )



A.0.005 | B.0.05 | C.0.5 | D.0.025 |
某校举行篮球比赛,两队长小明和小张在总共6场比赛中得分情况如下表:
则下列说法正确的是( )
场次 | 1 | 2 | 3 | 4 | 5 | 6 |
小明得分 | 30 | 15 | 23 | 33 | 17 | 8 |
小张得分 | 22 | 20 | 31 | 10 | 34 | 9 |
则下列说法正确的是( )
A.小明得分的极差小于小张得分的极差 |
B.小明得分的中位数小于小张得分的中位数 |
C.小明得分的平均数大于小张得分的平均数 |
D.小明的成绩比小张的稳定 |
已知某中学高一、高二、高三三个年级的青年学生志愿者人数分别为180,120,60,现采用分层抽样的方法从中抽取6名同学去森林公园风景区参加“保护鸟禽,爱我森林”宣传活动.
(1)应从高一、高二、高三三个年级的学生志愿者中分别抽取多少人?
(2)设抽取的6名同学分别用A,B,C,D,E,F表示,现从中随机抽取2名学生承担分发宣传材料的工作设事件M=“抽取的2名学生来自高一年级”,求事件M发生的概率.
(1)应从高一、高二、高三三个年级的学生志愿者中分别抽取多少人?
(2)设抽取的6名同学分别用A,B,C,D,E,F表示,现从中随机抽取2名学生承担分发宣传材料的工作设事件M=“抽取的2名学生来自高一年级”,求事件M发生的概率.
已知某学校高一、高二、高三学生的人数如下表:
利用分层抽样抽取部分学生观看演出,已知高一年级抽调15人,则该学校观看演出的人数为( )
年级 | 高一 | 高二 | 高三 |
学生人数 | 1500 | 2000 | 2500 |
利用分层抽样抽取部分学生观看演出,已知高一年级抽调15人,则该学校观看演出的人数为( )
A.35 | B.45 | C.60 | D.80 |
某手机生产厂商为迎接5G时代的到来,要生产一款5G手机,在生产之前,该公司对手机屏幕的需求尺寸进行社会调查,共调查了400人,将这400人按对手机屏幕的需求尺寸分为6组,分别是:
,
,
,
,
,
(单位:英寸),得到如下频率分布直方图:

其中,屏幕需求尺寸在
的一组人数为50人.
(1)求a和b的值;
(2)用分层抽样的方法在屏幕需求尺寸为
和
两组人中抽取6人参加座谈,并在6人中选择2人做代表发言,则这2人来自同一分组的概率是多少?
(3)若以厂家此次调查结果的频率作为概率,市场随机调查两人,这两人屏幕需求尺寸分别在
和
的概率是多少?







其中,屏幕需求尺寸在

(1)求a和b的值;
(2)用分层抽样的方法在屏幕需求尺寸为


(3)若以厂家此次调查结果的频率作为概率,市场随机调查两人,这两人屏幕需求尺寸分别在


在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下,则一定符合该标志的是( )
甲地:中位数为2,极差为5; 乙地:总体平均数为2,众数为2;
丙地:总体平均数为1,总体方差大于0; 丁地:总体平均数为2,总体方差为3.
甲地:中位数为2,极差为5; 乙地:总体平均数为2,众数为2;
丙地:总体平均数为1,总体方差大于0; 丁地:总体平均数为2,总体方差为3.
A.甲地 | B.乙地 | C.丙地 | D.丁地 |
设数据
是郑州市普通职工
个人的年收入,若这
个数据的中位数为
,平均数为
,方差为
,如果再加上世界首富的年收入
,则这
个数据中,下列说法正确的是( )








A.年收入平均数大大增大,中位数一定变大,方差可能不变 |
B.年收入平均数大大增大,中位数可能不变,方差变大 |
C.年收入平均数大大增大,中位数可能不变,方差也不变 |
D.年收入平均数可能不变,中位数可能不变,方差可能不变 |