- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司为了解某产品的获利情况,将今年1至7月份的销售收入
(单位:万元)与纯利润
(单位:万元)的数据进行整理后,得到如下表格:
该公司先从这7组数据中选取5组数据求纯利润
关于销售收入
的线性回归方程,再用剩下的2组数据进行检验.假设选取的是2月至6月的数据.
(1)求纯利润
关于销售收入
的线性回归方程(精确到0.01);
(2)若由线性回归方程得到的估计数据与检验数据的误差均不超过0.1万元,则认为得到的线性回归方程是理想的.试问该公司所得线性回归方程是否理想?
参考公式:
,
,
,
;参考数据:
.


月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售收入![]() | 13 | 13.5 | 13.8 | 14 | 14.2 | 14.5 | 15 |
纯利润![]() | 3.2 | 3.8 | 4 | 4.2 | 4.5 | 5 | 5.5 |
该公司先从这7组数据中选取5组数据求纯利润


(1)求纯利润


(2)若由线性回归方程得到的估计数据与检验数据的误差均不超过0.1万元,则认为得到的线性回归方程是理想的.试问该公司所得线性回归方程是否理想?
参考公式:





某幼儿园举办“yue”主题系列活动——“悦”动越健康亲子运动打卡活动,为了解小朋友坚持打卡的情况,对该幼儿园所有小朋友进行了调查,调查结果如下表:
(1)根据上表数据,求该幼儿园男生平均打卡的天数;
(2)若从打卡21天的小朋友中任选2人交流心得,求选到男生和女生各1人的概率.
打卡天数 | 17 | 18 | 19 | 20 | 21 |
男生人数 | 3 | 5 | 3 | 7 | 2 |
女生人数 | 3 | 5 | 5 | 7 | 3 |
(1)根据上表数据,求该幼儿园男生平均打卡的天数;
(2)若从打卡21天的小朋友中任选2人交流心得,求选到男生和女生各1人的概率.
众所周知,城市公交车的数量太多会造成资源的浪费,太少又难以满足乘客的需求,为此,某市公交公司在某站台的50名候车乘客中随机抽取10名,统计了他们的候车时间(单位:分钟),得到下表.
(1)估计这10名乘客的平均候车时间(同一组中的每个数据可用该组区间的中点值代替);
(2)估计这50名乘客的候车时间少于10分钟的人数.
候车时间 | 人数 |
![]() | 1 |
![]() | 4 |
![]() | 2 |
![]() | 2 |
![]() | 1 |
(1)估计这10名乘客的平均候车时间(同一组中的每个数据可用该组区间的中点值代替);
(2)估计这50名乘客的候车时间少于10分钟的人数.
某企业一种商品的产量与单位成本数据如表:
现根据表中所提供的数据,求得
关于
的线性回归方程为
,则
值等于( )
产量![]() | 2 | 3 | 4 |
单位成本![]() ![]() | 3 | a | 7 |
现根据表中所提供的数据,求得




A.![]() | B.![]() | C.![]() | D.![]() |
某市对各老旧小区环境整治效果进行满意度测评,共有10000人参加这次测评(满分100分,得分全为整数).为了解本次测评分数情况,从中随机抽取了部分人的测评分数进行统计,整理见下表:
(1)求出表中
,
,
的值;
(2)若分数在80(含80分)以上表示对该项目“非常满意”,其中分数在90(含90分)以上表示“十分满意”,现从被抽取的“非常满意“人群中随机抽取2人,求至少有一人分数是“十分满意”的概率;
(3)请你根据样本数据估计全市的平均测评分数
组别 | 分组 | 频数 | 频率 |
1 | ![]() | 3 | 0.06 |
2 | ![]() | 15 | 0.3 |
3 | ![]() | 21 | ![]() |
4 | ![]() | 3 | 0.12 |
5 | ![]() | ![]() | 0.1 |
合计 | ![]() | 1.00 |
(1)求出表中



(2)若分数在80(含80分)以上表示对该项目“非常满意”,其中分数在90(含90分)以上表示“十分满意”,现从被抽取的“非常满意“人群中随机抽取2人,求至少有一人分数是“十分满意”的概率;
(3)请你根据样本数据估计全市的平均测评分数
为检查某工厂所生产的8万台电风扇的质量,抽查了其中20台的无故障连续使用时限(单位:小时)如下:
248 256 232 243 188 268 278 266 289 312
274 296 288 302 295 228 287 217 329 283

(1)完成频率分布表,并作出频率分布直方图;
(2)估计8万台电风扇中有多少台无故障连续使用时限不低于280小时;
(3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.
248 256 232 243 188 268 278 266 289 312
274 296 288 302 295 228 287 217 329 283
分组 | 频数 | 频率 | 频率/组距 |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
总计 | | | 0.05 |

(1)完成频率分布表,并作出频率分布直方图;
(2)估计8万台电风扇中有多少台无故障连续使用时限不低于280小时;
(3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.
下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )


A.2018年3月的销售任务是400台 |
B.2018年月销售任务的平均值不超过600台 |
C.2018年第一季度总销售量为830台 |
D.2018年月销售量最大的是6月份 |
高三学生为了迎接高考,要经常进行模拟考试,锻炼应试能力,某学生从升入高三到高考要参加
次模拟考试,下面是高三第一学期某学生参加
次模拟考试的数学成绩表:
(1)已知该考生的模拟考试成绩
与模拟考试的次数
满足回归直线方程
,若高考看作第
次模拟考试,试估计该考生的高考数学成绩;
(2)把
次模拟考试的成绩单放在五个相同的信封中,从中随机抽取
个信封研究成绩,求抽取的
个信封中恰有
个成绩不等于平均值
的概率.
参考公式:
,
.


模拟考试第![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
考试成绩![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)已知该考生的模拟考试成绩




(2)把





参考公式:

