- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
40名学生某次数学考试成绩(单位:分)的频率分布直方图如下:

(1)求频率分布直方图中
的值;
(2)根据频率分布直方图求出样本数据的中位数(保留小数点后两位数字)和众数;
(3)从成绩在
的学生中任选3人,求这3人的成绩都在
中的概率.

(1)求频率分布直方图中

(2)根据频率分布直方图求出样本数据的中位数(保留小数点后两位数字)和众数;
(3)从成绩在


某兴趣小组有男生20人,女生10人,从中抽取一个容量为5的样本,恰好抽到2名男生和3名女生,则
①该抽样可能是系统抽样;
②该抽样可能是随机抽样:
③该抽样一定不是分层抽样;
④本次抽样中每个人被抽到的概率都是
.
其中说法正确的为( )
①该抽样可能是系统抽样;
②该抽样可能是随机抽样:
③该抽样一定不是分层抽样;
④本次抽样中每个人被抽到的概率都是

其中说法正确的为( )
A.①②③ | B.②③ | C.②③④ | D.③④ |
某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:

若
线性相关,线性回归方程为
,估计该制药厂6月份生产甲胶囊产量为( )

若


A.![]() | B.![]() | C.![]() | D.![]() |
为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的频率分布直方图,在这100人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表所示:

(1)由频率分布直方图,估计这100人年龄的平均数;
(2)根据以上统计数据填写下面的2
2列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
参考数据:


(1)由频率分布直方图,估计这100人年龄的平均数;
(2)根据以上统计数据填写下面的2

| 45岁以下 | 45岁以上 | 总计 |
不支持 | | | |
支持 | | | |
总计 | | | |
参考数据:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
某市高中某学科竞赛中,某区
名考生的参赛成绩的频率分布直方图如图所示.

(1)求这
名考生的平均成绩
(同一组中数据用该组区间中点值作代表);
(2)记
分以上为合格,
分及以下为不合格,结合频率分布直方图完成下表,能否在犯错误概率不超过
的前提下认为该学科竞赛成绩与性别有关?
附:
.


(1)求这


(2)记



| 不合格 | 合格 | 合计 |
男生 | ![]() | | |
女生 | | ![]() | |
合计 | | | ![]() |
附:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |

山东省《体育高考方案》于2012年2月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人.
(Ⅰ)请估计一下这组数据的平均数M;
(Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.
(Ⅰ)请估计一下这组数据的平均数M;
(Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.

某工厂有甲、乙两条流水线同时生产直径为
的零件,各抽取10件进行测量,其结果如下图所示,则以下结论不正确的是( )



A.甲流水线生产的零件直径的极差为![]() |
B.乙流水线生产的零件直径的中位数为![]() |
C.乙流水线生产的零件直径比甲流水线生产的零件直径稳定 |
D.甲流水线生产的零件直径的平均值小于乙流水线生产的零件直径的平均值 |