- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知一个不透明的袋子里有
个小球,其中
个是白球,
个是黑球.
(1)若从袋子里随机抽取一个球,求“抽取到白球”的概率;
(2)若从袋子里一次抽取两个球,求“抽取到两个球颜色不相同”的概率.



(1)若从袋子里随机抽取一个球,求“抽取到白球”的概率;
(2)若从袋子里一次抽取两个球,求“抽取到两个球颜色不相同”的概率.
某企业经过短短几年的发展,员工近百人.不知何因,人员虽然多了,但员工的实际工作效率还不如从前.
年
月初,企业领导按员工年龄从企业抽选
位员工交流,并将被抽取的员工按年龄(单位:岁)分为四组:第一组
,第二组
,第三组
,第四组
,且得到如下频率分布直方图:

(1)求实数
的值;
(2)若用简单随机抽样方法从第二组、第三组中再随机抽取
人作进一步交流,求“被抽取得
人均来自第二组”的概率.








(1)求实数

(2)若用简单随机抽样方法从第二组、第三组中再随机抽取


2018年3月30日,联合国粮农组织、联合国世界粮食计划署联合发布的《全国粮食危机报告》称全国粮食危机依然十分严峻.某地最近五年粮食需求量如下表:
(1)若最近五年的粮食需求量年平均数为260万吨,且粮食年需求量
与年份
之间的线性回归方程为
,求实数
的值;
(2)利用(1)中所求出的回归方程预测该地2020年的粮食需求量.
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
粮食需求量/万吨 | 236 | 246 | 257 | ![]() | ![]() |
(1)若最近五年的粮食需求量年平均数为260万吨,且粮食年需求量




(2)利用(1)中所求出的回归方程预测该地2020年的粮食需求量.
在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如右面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120 km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有( )


A.30辆 | B.1700辆 | C.170辆 | D.300辆 |
甲、乙两位同学参加数学应用知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:

(Ⅰ)分别估计甲、乙两名同学在培训期间所有测试成绩的平均分;
(Ⅱ)从上图中甲、乙两名同学高于85分的成绩中各选一个成绩作为参考,求甲、乙两人成绩都在90分以上的概率;
(Ⅲ)现要从甲、乙中选派一人参加正式比赛,根据所抽取的两组数据分析,你认为选派哪位同学参加较为合适?说明理由.

(Ⅰ)分别估计甲、乙两名同学在培训期间所有测试成绩的平均分;
(Ⅱ)从上图中甲、乙两名同学高于85分的成绩中各选一个成绩作为参考,求甲、乙两人成绩都在90分以上的概率;
(Ⅲ)现要从甲、乙中选派一人参加正式比赛,根据所抽取的两组数据分析,你认为选派哪位同学参加较为合适?说明理由.
某厂商调查甲乙两种不同型号汽车在10个不同地区卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图,为了鼓励卖场,在同型号汽车的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号的“星级卖场”.

(Ⅰ)求在这10个卖场中,甲型号汽车的“星级卖场”的个数;
(Ⅱ)若在这10个卖场中,乙型号汽车销售量的平均数为26.7,求
的概率;
(Ⅲ)若
,记乙型号汽车销售量的方差为
,根据茎叶图推断
为何值时,
达到最小值(只写出结论).
注:方差
,其中
是
,
,…,
的平均数.

(Ⅰ)求在这10个卖场中,甲型号汽车的“星级卖场”的个数;
(Ⅱ)若在这10个卖场中,乙型号汽车销售量的平均数为26.7,求

(Ⅲ)若




注:方差





七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |