- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了了解我校高2017级本部和大学城校区的学生是否愿意参加自主招生培训的情况,对全年级2000名高三学生进行了问卷调查,统计结果如下表:
(1)若从愿意参加自主招生培训的同学中按分层抽样的方法抽取15人,则大学城校区应抽取几人;
(2)现对愿意参加自主招生的同学组织摸底考试,考试题共有5道题,每题20分,对于这5道题,考生“如花姐”完全会答的有3题,不完全会的有2道,不完全会的每道题她得分
的概率满足:
,假设解答各题之间没有影响,
①对于一道不完全会的题,求“如花姐”得分的均值
;
②试求“如花姐”在本次摸底考试中总得分的数学期望.
校区 | 愿意参加 | 不愿意参加 |
重庆一中本部校区 | 220 | 980 |
重庆一中大学城校区 | 80 | 720 |
(1)若从愿意参加自主招生培训的同学中按分层抽样的方法抽取15人,则大学城校区应抽取几人;
(2)现对愿意参加自主招生的同学组织摸底考试,考试题共有5道题,每题20分,对于这5道题,考生“如花姐”完全会答的有3题,不完全会的有2道,不完全会的每道题她得分


①对于一道不完全会的题,求“如花姐”得分的均值

②试求“如花姐”在本次摸底考试中总得分的数学期望.
某市为加强城市圈的建设,计划对周边如图所示的
、
、
、
、
、
、
、
八个中小城市进行综合规划治理,第一期工程拟从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市
被选中的概率为( ).











A.![]() | B.![]() | C.![]() | D.![]() |
在一个不透明的口袋中装有3个红球、1个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中摸出两个球,摸到的两个球都是红球的概率是___________.
某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.04,出现丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为________.
甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.

(1)分别求出两人得分的平均数与方差;
(2)根据图和上面算得的结果,对两人的训练成绩作出评价.

(1)分别求出两人得分的平均数与方差;
(2)根据图和上面算得的结果,对两人的训练成绩作出评价.
高一某班以小组为单位在周末进行了一次社会实践活动,且每小组有5名同学,活动结束后,对所有参加活动的同学进行测评,其中A,B两个小组所得分数如下表:
其中B组一同学的分数已被污损,看不清楚了,但知道B组学生的平均分比A组学生的平均分高出1分.
(1)若从B组学生中随机挑选1人,求其得分超过85分的概率;
(2)从A组这5名学生中随机抽取2名同学,设其分数分别为m,n,求
的概率.
A组 | 86 | 77 | 80 | 94 | 88 |
B组 | 91 | 83 | ? | 75 | 93 |
其中B组一同学的分数已被污损,看不清楚了,但知道B组学生的平均分比A组学生的平均分高出1分.
(1)若从B组学生中随机挑选1人,求其得分超过85分的概率;
(2)从A组这5名学生中随机抽取2名同学,设其分数分别为m,n,求

为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.若课程“乐”不排在第一周,课程“御”不排在最后一周,则所有可能的排法种数为( )
A.216 | B.480 | C.504 | D.624 |