- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验.为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.
(1)由以下统计数据填写下面
列联表,并判断能否在犯错误的额概率不超过0.025的前提下认为“成绩优良与教学方式有关”?
附:
,其中
.
临界值表
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为
,求
的分布列及数学期望.
分数 | ![]() | ![]() | ![]() | ![]() | ![]() |
甲班频数 | 5 | 6 | 4 | 4 | 1 |
一般频数 | 1 | 3 | 6 | 5 | 5 |
(1)由以下统计数据填写下面

| 甲班 | 乙班 | 总计 |
成绩优良 | | | |
成绩不优良 | | | |
总计 | | | |
附:


临界值表
![]() | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为


2017年高考前第二次适应性训练结束后,对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布
的密度曲线非常拟和,据此估计:在全市随机抽取的
名高三同学中,恰有
名同学的英语成绩超过
分的概率是( )




A.![]() | B.![]() | C.![]() | D.![]() |
“五一”假期期间,某餐厅对选择
、
、
三种套餐的顾客进行优惠.对选择
、
套餐的顾客都优惠10元,对选择
套餐的顾客优惠20元.根据以往“五一”假期期间100名顾客对选择
、
、
三种套餐的情况得到下表:
将频率视为概率.
(I)若有甲、乙、丙三位顾客选择某种套餐,求三位顾客选择的套餐至少有两样不同的概率;
(II)若用随机变量
表示两位顾客所得优惠金额的综合,求
的分布列和期望.









选择套餐种类 | ![]() | ![]() | ![]() |
选择每种套餐的人数 | 50 | 25 | 25 |
将频率视为概率.
(I)若有甲、乙、丙三位顾客选择某种套餐,求三位顾客选择的套餐至少有两样不同的概率;
(II)若用随机变量


某人经营 一个抽奖游戏,顾客花费
元钱可购买一次游戏机会,每次游戏,顾客从标有
的
个红球,和标有
的
个黑球共
个球中随机摸出
个球,并根据摸出的球的情况进行兑奖.经营者奖顾客摸出的球情况分成以下类别:A:两球的颜色相同且号码相邻;B: 两球的颜色相同,但号码不相邻;
C: 两球的颜色不同,但号码相邻;D: 两球的号码相同;E: 其它情况.经营者打算将以上五种类别中最不容易发生的一种类别对应一等奖,最容易发生的一种类别对应二等奖,其他类别答应三等奖.
(1)一、二等奖分别对应哪一种类别(用字母表示即可);
(2)若一、二、三等奖分别获得价值
元、
元、
元的奖品,某天所有顾客参加游戏的次数共计
次,试估计经营者这一天的盈利.







C: 两球的颜色不同,但号码相邻;D: 两球的号码相同;E: 其它情况.经营者打算将以上五种类别中最不容易发生的一种类别对应一等奖,最容易发生的一种类别对应二等奖,其他类别答应三等奖.
(1)一、二等奖分别对应哪一种类别(用字母表示即可);
(2)若一、二、三等奖分别获得价值




为吸引顾客,某公司在商场举办电子游戏活动.对于
两种游戏,每种游戏玩一次均会出现两种结果,而且每次游戏的结果相互独立,具体规则如下:玩一次游戏
,若绿灯闪亮,获得
分,若绿灯不闪亮,则扣除
分(即获得
分),绿灯闪亮的概率为
;玩一次游戏
,若出现音乐,获得
分,若没有出现音乐,则扣除
分(即获得
分),出现音乐的概率为
.玩多次游戏后累计积分达到
分可以兑换奖品.
(1)记
为玩游戏
和
各一次所得的总分,求随机变量
的分布列和数学期望;
(2)记某人玩
次游戏
,求该人能兑换奖品的概率.












(1)记




(2)记某人玩


团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在
市开展了团购业务,
市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.
(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;
(2)从所调查的50家商家中任取两家,用
表示这两家商家参加的团购网站数量之差的绝对值,求随机变量
的分布列和数学期望;
(3)将频率视为概率,现从
市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为
,试求事件“
”的概率.


(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;
(2)从所调查的50家商家中任取两家,用


(3)将频率视为概率,现从



