- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商场拟对某商品进行促销,现有两种方案供选择,每种促销方案都需分两个月实施,且每种方案中第一个月与第二个月的销售相互独立.根据以往促销的统计数据,若实施方案1,预计第一个月的销量是促销前的1.2倍和1.5倍的概率分别是0.6和0.4,第二个月的销量是第一个月的1.4倍和1.6倍的概率都是0.5;若实施方案2,预计第一个月的销量是促销前的1.4倍和1.5倍的概率分别是0.7和0.3,第二个月的销量是第一个月的1.2倍和1.6倍的概率分别是0.6和0.4.令
表示实施方案
的第二个月的销量是促销前销量的倍数.
(Ⅰ)求
,
的分布列;
(Ⅱ)不管实施哪种方案,
与第二个月的利润之间的关系如下表,试比较哪种方案第二个月的利润更大.


(Ⅰ)求


(Ⅱ)不管实施哪种方案,


某年级举办团知识竞赛.
、
、
、
四个班报名人数如下:
年级在报名的同学中按分层抽样的方式抽取10名同学参加竞赛,每位参加竞赛的同学从10个关于团知识的题目中随机抽取4个作答,全部答对的同学获得一份奖品.
(Ⅰ)求各班参加竞赛的人数;
(Ⅱ)若
班每位参加竞赛的同学对每个题目答对的概率均为
,求
班恰好有2位同学获得奖品的概率;
(Ⅲ)若这10个题目,小张同学只有2个答不对,记小张答对的题目数为
,求
的分布列及数学期望
.




班别 | ![]() | ![]() | ![]() | ![]() |
人数 | 45 | 60 | 30 | 15 |
年级在报名的同学中按分层抽样的方式抽取10名同学参加竞赛,每位参加竞赛的同学从10个关于团知识的题目中随机抽取4个作答,全部答对的同学获得一份奖品.
(Ⅰ)求各班参加竞赛的人数;
(Ⅱ)若



(Ⅲ)若这10个题目,小张同学只有2个答不对,记小张答对的题目数为



小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%—60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.
(Ⅰ)求小明连续两天都遇上拥挤的概率;
(Ⅱ)设
是小明游览期间遇上舒适的天数,求
的分布列和数学期望;
(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)

(Ⅱ)设


(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)
为备战
年瑞典乒乓球世界锦标赛,乒乓球队举行公开选拨赛,甲、乙、丙三名选手入围最终单打比赛名单.现甲、乙、丙三人进行队内单打对抗比赛,每两人比赛一场,共赛三场,每场比赛胜者得
分,负者得
分,在每一场比赛中,甲胜乙的概率为
,丙胜甲的概率为
,乙胜丙的概率为
,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为
.
(Ⅰ)求
的值;
(Ⅱ)设在该次对抗比赛中,丙得分为
,求
的分布列和数学期望.







(Ⅰ)求

(Ⅱ)设在该次对抗比赛中,丙得分为


某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_____.

已知甲在上班途中要经过两个路口,在第一个路口遇到红 灯的概率为0.5,两个路口连续遇到红灯的概率为0.4,则 甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( )
A.0.6 | B.0.7 | C.0.8 | D.0.9 |
某学校要用甲、乙、丙三辆校车把教职工从老校区接到校本部,已知从老校区到校本部有两条公路,校车走公路①时堵车的概率为
,校车走公路②时堵车的概率为p.若甲、乙两辆校车走公路①,丙校车由于其他原因走公路②,且三辆校车是否堵车相互之间没有影响.
(1)若三辆校车中恰有一辆校车被堵的概率为
,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆校车中被堵车辆的辆数ξ的分布列和数学期望.

(1)若三辆校车中恰有一辆校车被堵的概率为

(2)在(1)的条件下,求三辆校车中被堵车辆的辆数ξ的分布列和数学期望.