- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量
:
①求对商品和服务全好评的次数
的分布列(概率用组合数算式表示);
②求
的数学期望和方差.

(
,其中
)
(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量

①求对商品和服务全好评的次数

②求


(


每逢节假日,在微信好友群发红包逐渐成为一种时尚,还能增进彼此的感情.2015年中秋节期间,小鲁在自己的微信校友群,向在线的甲、乙、丙、丁四位校友随机发放红包,发放的规则为:每次发放1个,每个人抢到的概率相同.
(1)若小鲁随机发放了3个红包,求甲至少得到1个红包的概率;
(2)若丁因有事暂时离线一段时间,而小鲁在这段时间内共发放了3个红包,其中2个红包中各有5元,
1个红包有10元,记这段时间内乙所得红包的总钱数为
元,求
的分布列和数学期望.
(1)若小鲁随机发放了3个红包,求甲至少得到1个红包的概率;
(2)若丁因有事暂时离线一段时间,而小鲁在这段时间内共发放了3个红包,其中2个红包中各有5元,
1个红包有10元,记这段时间内乙所得红包的总钱数为


某省高中男生升高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16),现从该省某高校三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第一组[157.5,162.5],第二组[162.5,167.5],…,第六组[182.5,187.5],如图是按上述分组方法得到的频率分布直方图.

(1)求该学校高三年级男生的平均身高;(同一组数据用该区间的中点值作代表)
(2)求被抽取的50名男生中身高在177.5cm以上(含177.5cm)的人数;
(3)从被抽取的50名男生中身高在177.5cm以上(含177.5cm)的人中任意抽取2人,记该2人中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的数学期望.

(1)求该学校高三年级男生的平均身高;(同一组数据用该区间的中点值作代表)
(2)求被抽取的50名男生中身高在177.5cm以上(含177.5cm)的人数;
(3)从被抽取的50名男生中身高在177.5cm以上(含177.5cm)的人中任意抽取2人,记该2人中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的数学期望.
某班同学利用国庆节进行社会实践,对[20,50]岁的临汾市“低头族”(低头族电子产品而忽视人际交往的人群)人群随是因使用机抽取1000人进行了一次调查,得到如下频数分布表:

(1)在答题卡上作出这些数据的频率分布直方图;
(2)估计[20,50]年龄段的“低头族”的平均年龄(同一组中的数据用该组区间的中点值作代表);
(3)从年龄段在[25,35)的“低头族”中采用分层抽样法抽取6人接受采访,并从6人中随机选取2人作为嘉宾代表,求选取的2名嘉宾代表中恰有1人年龄在[25,30)岁的概率.

(1)在答题卡上作出这些数据的频率分布直方图;
(2)估计[20,50]年龄段的“低头族”的平均年龄(同一组中的数据用该组区间的中点值作代表);
(3)从年龄段在[25,35)的“低头族”中采用分层抽样法抽取6人接受采访,并从6人中随机选取2人作为嘉宾代表,求选取的2名嘉宾代表中恰有1人年龄在[25,30)岁的概率.
为了解荆州中学学生健康状况,从去年高二年级体检表中抽取若干份,将他们的体重数据作为样本.将样本的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.

(Ⅰ)求样本的容量;
(Ⅱ)以荆州中学的样本数据来估计全省的总体数据,若从全省高二年级的所有学生中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.

(Ⅰ)求样本的容量;
(Ⅱ)以荆州中学的样本数据来估计全省的总体数据,若从全省高二年级的所有学生中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.
2015年高考结束,某学校对高三毕业生的高考成绩进行调查,高三年级共有1到6个班,从六个班随机抽取50人,对于高考的考试成绩达到自己的实际水平的情况,并将抽查的结果制成如下的表格,
(1)根据上述的表格,估计该校高三学生2015年的高考成绩达到自己的实际水平的概率;
(2)若从5班、6班的调查中各随机选取2同学进行调查,调查的4人中高考成绩没有达到实际水平的人数为
,求随机
的分布列和数学的期望值.
班级 | 1 | 2 | 3 | 4 | 5 | 6 |
频数 | 6 | 10 | 12 | 12 | 6 | 4 |
达到 | 3 | 6 | 6 | 6 | 4 | 3 |
(1)根据上述的表格,估计该校高三学生2015年的高考成绩达到自己的实际水平的概率;
(2)若从5班、6班的调查中各随机选取2同学进行调查,调查的4人中高考成绩没有达到实际水平的人数为


甲、乙两位同学从
共
所高校中,任选两所参加自主招生考试(并且只
能选两所高校),但同学特别喜欢
高校,他除选
高校外,再在余下的
所中随机选1所;同学乙
对
所高校没有偏爱,在
所高校中随机选2所. 若甲同学未选中
高校且乙选中
高校的概率为
.
(1)求自主招生的高校数
;
(2)记
为甲、乙两名同学中未参加
高校自主招生考试的人数,求
的分布列和数学期望.



能选两所高校),但同学特别喜欢



对





(1)求自主招生的高校数

(2)记


