- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- + 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
抛物线
上有一点P,它到A(2,10)距离与它到焦点距离之和最小时,点P坐标是( )

A.(![]() | B.(![]() | C.(2,8) | D.(1,2) |
已知抛物线
:
上一点
到其焦点
的距离为5.
(1)求
与
的值;
(2)设动直线
与抛物线
相交于
,
两点,问:在
轴上是否存在与
的取值无关的定点
,使得
?若存在,求出点
的坐标;若不存在,说明理由.




(1)求


(2)设动直线








