- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 相交圆的公共弦方程
- 两圆的公共弦长
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆C1:x2+y2-4x-2y-5=0与圆C2:x2+y2-6x-y-9=0.
(1)求证:两圆相交;
(2)求两圆公共弦所在的直线方程.
(1)求证:两圆相交;
(2)求两圆公共弦所在的直线方程.
已知两个圆:①
;②
,则由①式减去②式可得两圆的对称轴的方程,将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,且已知命题应成为所推广命题的一个特例,则推广命题为__________.


已知圆x2+y2-4x+2y+4=0与圆x2+y2-(2b-10)x-2by+2b2-10b+16=0相交于A(x1,y1),B(x2,y2)两点,且满足
,则b=________.
