- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 直线与圆的实际应用
- 坐标法的应用——直线与圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知平面直角坐标系上一动点
到点
的距离是点
到点
的距离的2倍.
(Ⅰ)求点
的轨迹方程:
(Ⅱ)若点
与点
关于点
对称,求
、
两点间距离的最大值;
(Ⅲ)若过点
的直线
与点
的轨迹
相交于
、
两点,
,则是否存在直线
,使
取得最大值,若存在,求出此时
的方程,若不存在,请说明理由.




(Ⅰ)求点

(Ⅱ)若点





(Ⅲ)若过点










如图,某市有一条东西走向的公路l,现欲经过公路l上的O处铺设一条南北走向的公路m,在施工过程中发现O处的正北方向1百米的A处有一汉代古迹,为了保护古迹,该市委决定以A为圆心,1百米为半径设立一个圆形保护区,为了连通公路l,m,欲再新建一条公路PQ,点P,Q分别在公路l,m上(点P,Q分别在点O的正东、正北方向),且要求PQ与圆A相切.

(1)当点P距O处2百米时,求OQ的长;
(2)当公路PQ的长最短时,求OQ的长.

(1)当点P距O处2百米时,求OQ的长;
(2)当公路PQ的长最短时,求OQ的长.
已知圆心在原点的圆
与直线
相切.
(1)求圆的方程;
(2)设动直线
与圆
交于
两点,问在
轴正半轴上是否存在定点
,使得直线
与直线
关于
轴对称?若存在,请求出点
的坐标;若不存在,请说明理由.


(1)求圆的方程;
(2)设动直线








