- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与圆的位置关系
- + 由直线与圆的位置关系求参数
- 求直线与圆交点的坐标
- 直线与圆相交的性质——韦达定理及应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,圆
与直线
相切于点
,与
正半轴交于点
,与直线
在第一象限的交点为
.点
为圆
上任一点,且满足
,以
为坐标的动点
的轨迹记为曲线
.

(1)求圆
的方程及曲线
的方程;
(2)若两条直线
和
分别交曲线
于点
和
,求四边形
面积的最大值,并求此时的
的值.
(3)根据曲线
的方程,研究曲线
的对称性,并证明曲线
为椭圆.














(1)求圆


(2)若两条直线







(3)根据曲线



如图,圆
与直线
相切于点
,与
正半轴交于点
,与直线
在第一象限的交点为
. 点
为圆
上任一点,且满足
,以
为坐标的动点
的轨迹记为曲线
.

(1)求圆
的方程及曲线
的方程;
(2)若两条直线
和
分别交曲线
于点
和
,求四边形
面积的最大值,并求此时的
的值.
(3)已知曲线
的轨迹为椭圆,研究曲线
的对称性,并求椭圆
的焦点坐标.














(1)求圆


(2)若两条直线







(3)已知曲线


