- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 圆的方程
- + 直线与圆的位置关系
- 直线与圆的位置关系
- 圆的切线方程
- 圆的弦长与弦心距
- 直线与圆的应用
- 圆与圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
是过坐标原点的直线,圆
有
个点到直线的距离1.
(1)若有且只有一条直线
,使得圆
上只有唯一的点到直线
的距离是1.求
的值;
(2)当
时,揭示
与直线
的倾斜角
的关系.



(1)若有且只有一条直线




(2)当




已知椭圆
:
的左、右焦点分别为
,右顶点为
,且
过点
,圆
是以线段
为直径的圆,经过点
且倾斜角为
的直线与圆
相切.
(1)求椭圆
及圆
的方程;
(2)是否存在直线
,使得直线
与圆
相切,与椭圆
交于
两点,且满足
?若存在,请求出直线
的方程,若不存在,请说明理由.











(1)求椭圆


(2)是否存在直线







已知点P(x,y)是直线
上一动点,直线PA,PB是圆C:x2+y2﹣4y=0的两条切线,A,B为切点,C为圆心,则四边形PACB面积的最小值是( )

A.![]() | B.4 | C.![]() | D.![]() |
已知点A(a,3),圆C:(x﹣1)2+(y﹣2)2=4.
(1)设a=4,求过点A且与圆C相切的直线方程;
(2)设a=3,直线l过点A且被圆C截得的弦长为
,求直线l的方程.
(1)设a=4,求过点A且与圆C相切的直线方程;
(2)设a=3,直线l过点A且被圆C截得的弦长为
