- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 圆的方程
- + 直线与圆的位置关系
- 直线与圆的位置关系
- 圆的切线方程
- 圆的弦长与弦心距
- 直线与圆的应用
- 圆与圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
为圆
的圆心,
是圆上的动点,点
在圆的半径
上,且有点
和
上的点
,满足
.
(Ⅰ)当点
在圆上运动时,判断
点的轨迹是什么?并求出其方程;
(Ⅱ)若斜率为
的直线
与圆
相切,与(Ⅰ)中所求点
的轨迹交于不同的两点
,且
(其中
是坐标原点)求
的取值范围.









(Ⅰ)当点


(Ⅱ)若斜率为








已知F1,F2分别是椭圆的左、右焦点,现以F2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M、N,若过F1的直线MF1是圆F2的切线,则椭圆的离心率为 ______ .
已知椭圆
的方程为
,椭圆
的离心率正好是双曲线
的离心率的倒数,椭圆
的短轴长等于抛物线
上一点
到抛物线焦点
的距离.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
的两个交点为
,
两点,已知圆
:
与
轴的交点分别为
,
(点
在
轴的正半轴),且直线
与圆
相切,求
的面积与
的面积乘积的最大值.








(1)求椭圆

(2)若直线















已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.
(1)求圆C的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.
(1)求圆C的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.