- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 圆的方程
- + 直线与圆的位置关系
- 直线与圆的位置关系
- 圆的切线方程
- 圆的弦长与弦心距
- 直线与圆的应用
- 圆与圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分10分)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+
)=
a,曲线C2的参数方程为
(φ为参数,0≤φ≤π).
(1)求C1的直角坐标方程;
(2)当C1与C2有两个不同公共点时,求实数a的取值范围.



(1)求C1的直角坐标方程;
(2)当C1与C2有两个不同公共点时,求实数a的取值范围.
(本小题满分12分)(理科)已知圆
(1)若圆
的切线在
轴和
轴上截距相等,求切线的方程;
(2)从圆
外一点
向圆引切线
,
为切点,
为坐标原点,且
,求
的最小值

(1)若圆



(2)从圆







(12分)在平面直角坐标系xOy中,已知动圆过点(2,0),且被y轴所截得的弦长为4.
(Ⅰ)求动圆圆心的轨迹C1的方程;
(Ⅱ)过点P(1,2)分别作斜率为
的两条直线
,交C1于A,B两点(点A,B异于点P),若
,且直线AB与圆
相切,求△PAB的面积.
(Ⅰ)求动圆圆心的轨迹C1的方程;
(Ⅱ)过点P(1,2)分别作斜率为



