- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断点与圆的位置关系
- + 点与圆的位置关系求参数
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在直角坐标系
中,圆
的方程为
.
(1)若圆
上有两点
,
关于直线
对称,且
,求直线
的方程;
(2)圆
与
轴相交于
,
两点,圆内的动点
使
,
,
成等比数列,求
的取值范围.



(1)若圆






(2)圆









已知
是实系数一元二次方程
的虚根,记它在直角坐标平面上的对应点位
.
(1)若
在直线
上,求证:
在圆
:
上;
(2)给定圆
,则存在唯一的线段
满足:
①若
在圆
上,则
在线段
上;
②若
是线段
上一点(非端点),则
在圆
上,写出线段
的表达式,并说明理由;
(3)由(2)知线段
与圆
之间确定了一种对应关系,通过这种对应关系的研究,填写表一(表中
是(1)中圆
的对应线段).
表一:



(1)若





(2)给定圆


①若




②若





(3)由(2)知线段




表一:
线段![]() ![]() | ![]() |
![]() ![]() | |
![]() ![]() | |
线段![]() ![]() | |
已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.