- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线的倾斜角与斜率
- + 直线的方程
- 直线的方程的概念
- 两点式方程
- 直线的一般式方程
- 直线的交点坐标与距离公式
- 直线综合
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设椭圆
:
的左、右焦点分别为
,上顶点为
,过
与
垂直的直线交
轴负半轴于
点,且
恰好是线段
的中点.
(1)若过
三点的圆恰好与直线
相切,求椭圆
的方程;
(2)在(1)的条件下,
是椭圆
的左顶点,过点
作与
轴不重合的直线
交椭圆
于
两点,直线
分别交直线
于
两点,若直线
的斜率分别为
,试问:
是否为定值?若是,求出该定值;若不是,请说明理由.










(1)若过



(2)在(1)的条件下,













已知椭圆
的左焦点为
,右顶点为
,上顶点为
,过
、
、
三点的圆
的圆心坐标为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线
(
为常数,
)与椭圆
交于不同的两点
和
.
(ⅰ)当直线
过
,且
时,求直线
的方程;
(ⅱ)当坐标原点
到直线
的距离为
,且
面积为
时,求直线
的倾斜角.









(Ⅰ)求椭圆的方程;
(Ⅱ)若直线






(ⅰ)当直线




(ⅱ)当坐标原点






平面内一动点
与两定点
斜率之积为2.
(1)求动点
的曲线
的方程;
(2)过点
能否作一条直线
与曲线
交于
两点,且
为线段
中点,若能,求出
的方程,不能请说明理由.


(1)求动点


(2)过点






