- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
的两个顶点
的坐标分别为
,
,且
所在直线的斜率之积等于
,记顶点
的轨迹为
.
(Ⅰ)求顶点
的轨迹
的方程;
(Ⅱ)若直线
与曲线
交于
两点,点
在曲线
上,且
为
的重心(
为坐标原点),求证:
的面积为定值,并求出该定值.








(Ⅰ)求顶点


(Ⅱ)若直线









已知椭圆
的左右焦点分别为
,O为坐标原点,P为第二象限内椭圆上的一点,且
,直线
交y轴于点M,若
,则该椭圆的离心率为( )





A.![]() | B.![]() | C.![]() | D.![]() |
已知动圆
和定圆
外切,和定直线
相切.
(1)求该动圆圆心
的轨迹
的方程;
(2)过点
的直线
与
交于
两点,在曲线
上存在一点
,使得
为定值,求出点
的坐标.



(1)求该动圆圆心


(2)过点







