- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间直角坐标系
- + 空间向量及其运算
- 空间向量的有关概念
- 空间共线向量定理
- 空间共面向量定理
- 空间向量的数乘运算
- 空间向量的数量积运算
- 空间向量的正交分解与坐标表示
- 空间向量运算的坐标表示
- 空间向量的应用
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面四边形
中,
、
分
、
所成的比为
,即
,则有:
.

(1)拓展到空间,写出空间四边形
类似的命题,并加以证明;
(2)在长方体
中,
,
,
,
、
分别为
、
的中点,利用上述(1)的结论求线段
的长度;
(3)在所有棱长均为
平行六面体
中,
(
为锐角定值),
、
分
、
所成的比为
,求
的长度.(用
,
,
表示)









(1)拓展到空间,写出空间四边形

(2)在长方体









(3)在所有棱长均为












