- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 棱锥的结构特征和分类
- + 判断几何体是否为棱锥
- 正棱锥及其有关计算
- 棱锥的展开图
- 棱锥中截面的有关计算
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
判断下列命题的真假.
(1)有一个面是多边形,其余各面都是三角形的几何体是棱锥;
(2)底面是正多边形的棱锥一定是正棱锥;
(3)有两个面是平行的相似多边形,其余各面都是梯形的几何体是棱台.
(1)有一个面是多边形,其余各面都是三角形的几何体是棱锥;
(2)底面是正多边形的棱锥一定是正棱锥;
(3)有两个面是平行的相似多边形,其余各面都是梯形的几何体是棱台.
下面是关于三棱锥的四个命题:
①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.
②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.
④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.
其中,真命题的编号是 (写出所有真命题的编号)
①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.
②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.
④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.
其中,真命题的编号是 (写出所有真命题的编号)
如图,已知四边形ABCD是一个正方形,E,F分别是边AB和BC的中点,沿折痕DE,EF,FD折起得到一个空间几何体,则这个空间几何体是________(只填几何体的名称).

如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.
问:(1)折起后形成的几何体是什么几何体?
(2)这个几何体共有几个面,每个面的三角形有何特点?
(3)每个面的三角形面积为多少?
问:(1)折起后形成的几何体是什么几何体?
(2)这个几何体共有几个面,每个面的三角形有何特点?
(3)每个面的三角形面积为多少?

如图,正方形ABCD的边长为a,E、F、G、H分别为AB、BC、CD、DA的中点.若沿EF、FG、GH、HE将四角折起,试问能折成一个四棱锥吗?为什么?你从中能得到什么结论?对于圆锥有什么类似的结论?

下列说法中正确的是
A.在正三棱锥中,斜高大于侧棱 |
B.有一条侧棱垂直于底面的棱柱是直棱柱 |
C.底面是正方形的棱锥是正四棱锥 |
D.有一个面是多边形,其余各面均为三角形的几何体是棱锥 |
如图,在长方体ABCDA′B′C′D′中,P是对角线AC与BD的交点,若P为四棱锥的顶点,四棱锥的底面为长方体的一个面,则这样的四棱锥有( )


A.3个 | B.4个 |
C.5个 | D.6个 |
下列说法正确的是___________
用一个平面截一个球,得到的截面是一个圆;
圆台的任意两条母线延长后一定交于一点;
有一个面为多边形,其余各面都是三角形的几何体叫做棱锥;
若棱锥的侧棱长与底面多边形的边长相等,则该棱锥不可能是正六棱锥;
用斜二测画法作出正三角形的直观图,则该直观图面积为原三角形面积的一半.




