- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- + 基本不等式(均值定理)
- 由基本不等式比较大小
- 由基本不等式证明不等关系
- 基本(均值)不等式求最值
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
给出下列命题:
(1)导数f′(x0)=0是y=f(x)在x0处取得极值的既不充分也不必要条件;
(2)若等比数列的n项sn=2n+k,则必有k=﹣1;
(3)若x∈R+,则2x+2﹣x的最小值为2;
(4)函数y=f(x)在[a,b]上必定有最大值、最小值;
(5)平面内到定点(3,﹣1)的距离等于到定直线x+2y﹣1的距离的点的轨迹是抛物线.
其中正确命题的序号是_____ .
(1)导数f′(x0)=0是y=f(x)在x0处取得极值的既不充分也不必要条件;
(2)若等比数列的n项sn=2n+k,则必有k=﹣1;
(3)若x∈R+,则2x+2﹣x的最小值为2;
(4)函数y=f(x)在[a,b]上必定有最大值、最小值;
(5)平面内到定点(3,﹣1)的距离等于到定直线x+2y﹣1的距离的点的轨迹是抛物线.
其中正确命题的序号是
对于函数
,有以下说法:
①
是
的极值点.
②当
时,
在
上是减函数.
③
的图像与
处的切线必相交于另一点.
④若
且
则
有最小值是
.
其中说法正确的序号是___________.

①


②当



③


④若




其中说法正确的序号是___________.
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).

(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?





(1)求


(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为





某种商品原来每件售价为25元,年销售量8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到
元.公司拟投入
万元作为技改费用,投入50万元作为固定宣传费用,投入
万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到


