- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 一元二次不等式的概念及辨析
- 解不含参数的一元二次不等式
- 解含有参数的一元二次不等式
- 由一元二次不等式的解确定参数
- + 一元二次方程根的分布问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题12分)已知函数
(1)当
时,求方程
的解;
(2)若方程
在
上有实数根,求实数
的取值范围;
(3)当
时,若对任意的
,总存在
,使
成立,求实数
的取值范围.

(1)当


(2)若方程



(3)当





已知
是函数
的零点,
.
(1)求实数
的值;
(2)若不等式
在
上恒成立,求实数
的取值范围;
(3)若方程
有三个不同的实数解,求实数
的取值范围.



(1)求实数

(2)若不等式



(3)若方程


已知函数
,若在定义域内存在
,使得
成立,则称
为函数
的局部对称点.
(1)若
、
且
,证明:函数
必有局部对称点;
(2)若函数
在区间
内有局部对称点,求实数
的取值范围;
(3)若函数
在
上有局部对称点,求实数
的取值范围.





(1)若




(2)若函数



(3)若函数



已知函数
,在区间
上有最大值
,有最小值
,设
.
(1)求
的值;
(2)不等式
在
时恒成立,求实数
的取值范围;
(3)若方程
有三个不同的实数解,求实数
的取值范围.





(1)求

(2)不等式



(3)若方程

