- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 一元二次不等式的概念及辨析
- + 解不含参数的一元二次不等式
- 解含有参数的一元二次不等式
- 由一元二次不等式的解确定参数
- 一元二次方程根的分布问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知一元二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.
(1)当a=1,
时,求出不等式f(x)<0的解;
(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围.
(1)当a=1,

(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围.
已知二次函数g(x)=ax2+c(a,c∈R),g(1)=1且不等式g(x)≤x2﹣x+1对一切实数x恒成立.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,设函数h(x)=2g(x)﹣2,关于x的不等式h(x﹣1)+4h(m)≤h(
)﹣4m2h(x),在x∈[
,+∞)有解,求实数m的取值范围.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,设函数h(x)=2g(x)﹣2,关于x的不等式h(x﹣1)+4h(m)≤h(


已知二次函数
,若不等式
的解集为
.
(1)解关于x的不等式:
;
(2)是否存在实数
,使得关于x的函数
(
)的最小值为-4?若存在,求a的值;若不存在,请说明理由.



(1)解关于x的不等式:

(2)是否存在实数



设a,b,c,d不全为0,给定函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.若f(x),g(x)满足①f(x)有零点;②f(x)的零点均为g(f(x))的零点;③g(f(x))的零点均为f(x)的零点.则称f(x),g(x)为一对“K函数”.
(1)当a=c=d=1,b=0时,验证f(x),g(x)是否为一对“K函数”,并说明理由;
(2)若f(x),g(x)为任意一对“K函数”,求d的值;
(3)若a=1,f(1)=0,且f(x),g(x)为一对“K函数”,求c的取值范围.
(1)当a=c=d=1,b=0时,验证f(x),g(x)是否为一对“K函数”,并说明理由;
(2)若f(x),g(x)为任意一对“K函数”,求d的值;
(3)若a=1,f(1)=0,且f(x),g(x)为一对“K函数”,求c的取值范围.