- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 等比数列的定义
- 等比数列的通项公式
- 等比数列的性质
- 等比数列的函数特性
- + 等比数列的前n项和
- 求等比数列前n项和
- 等比数列前n项和的基本量计算
- 等比数列前n项和的性质
- an与Sn的关系——等比数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯
A.1盏 | B.3盏 |
C.5盏 | D.9盏 |
九章算术中一文:蒲第一天长3尺,以后逐日减半;莞第一天长1尺,以后逐日增加一倍,则( )天后,蒲、莞长度相等?参考数据:lg2=0.3010,lg3=0.4771,结果精确到0.1.(注:蒲每天长高前一天的一半,莞每天长高前一天的2倍.)
A.2.2 | B.2.4 | C.2.6 | D.2.8 |
我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何”,翻译过来就是:有五尺厚的墙,两只老鼠从墙的两边相对分别打洞穿墙,大、小鼠第一天都进一尺,以后每天,大鼠加倍,小鼠减半,则几天后两鼠相遇,这个问题体现了古代对数列问题的研究,现将墙的厚度改为500尺,则需要几天时间才能打穿(结果取整数)( )
A.6 | B.7 | C.8 | D.9 |
Sn 为等比数列{an }的前 n 项和, a2 +a3+a4 = 42 , a3 +a4+a5 = 84 ,则 S3
A.12 | B.21 | C.36 | D.48 |