- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 求等差数列前n项和
- 等差数列前n项和的基本量计算
- 含绝对值的等差数列前n项和
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(1)设曲线
在原点处切线与直线
垂直,则a=______.
(2)已知等差数列
中,已知
,则
=________________.
(3)若函数
,则
__________.
(4)曲线
与直线
及
轴围成的图形的面积为__________.


(2)已知等差数列



(3)若函数


(4)曲线



某人以12.1万元购买了一辆汽车用于上班,每年用于保险费和汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增.
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
济南高新区引进一高科技企业,投入资金720万元建设基本设施,第一年各种运营费用120万元,以后每年增加40万元;每年企业销售收入500万元,设
表示前
年的纯收入.
前
年的总收入—前
年的总支出-投资额)
(1)从第几年开始获取纯利润?
(2)若干年后,该企业为开发新产品,有两种处理方案:
①年平均利润最大时,以480万元出售该企业;
②纯利润最大时,以160万元出售该企业;问哪种方案最合算?





(1)从第几年开始获取纯利润?
(2)若干年后,该企业为开发新产品,有两种处理方案:
①年平均利润最大时,以480万元出售该企业;
②纯利润最大时,以160万元出售该企业;问哪种方案最合算?
为了提高职工的工作积极性,在工资不变的情况下,某企业给职工两种追加奖励性绩效奖金的方案:第一种方案是每年年末(12月底)追加绩效奖金一次,第一年末追加的绩效奖金为
万元,以后每次所追加的绩效奖金比上次所追加的绩效奖金多
万元;第二种方案是每半年(6月底和12月底)各追加绩效奖金一次,第一年的6月底追加的绩效奖金为
万元,以后每次所追加的绩效奖金比上次所追加的绩效奖金多
万元.
假设你准备在该企业工作
年,根据上述方案,试问:
(1)如果你在该公司只工作2年,你将选择哪一种追加绩效奖金的方案?请说明理由.
(2)如果选择第二种追加绩效奖金的方案比选择第一种方案的奖金总额多,你至少在该企业工作几年?
(3)如果把第二种方案中的每半年追加
万元改成每半年追加
万元,那么
在什么范围内取值时,选择第二种方案的绩效奖金总额总是比选择第一种方案多?




假设你准备在该企业工作

(1)如果你在该公司只工作2年,你将选择哪一种追加绩效奖金的方案?请说明理由.
(2)如果选择第二种追加绩效奖金的方案比选择第一种方案的奖金总额多,你至少在该企业工作几年?
(3)如果把第二种方案中的每半年追加



已知函数f(x)=3x﹣1的反函数为
,且
(1)求a的值;
(2)若
,Sn是数列{an}的前n项和,若不等式λan≤2n•Sn对任意n∈N*恒成立,求实数λ的最大值.


(1)求a的值;
(2)若
