- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理和余弦定理
- + 解三角形的实际应用
- 正、余弦定理在几何中的应用
- 正、余弦定理的实际应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在△ABC中,角A,B,C的对边分别为a,b,c,并且sin2
=
.
(1)试判断△ABC的形状并加以证明;
(2)当c=1时,求△ABC周长的最大值.


(1)试判断△ABC的形状并加以证明;
(2)当c=1时,求△ABC周长的最大值.
两灯塔A,B与海洋观察站C的距离都等于a(km), 灯塔A在C北偏东30°,B在C南偏东60°,则A,B之间的相距
A.![]() | B.![]() | C.a (km) | D.2a (km) |
某船开始看见灯塔
时,灯塔
在船南偏东
方向,后来船沿南偏东
的方向航行
后,看见灯塔
在船正西方向,则这时船与灯塔
的距离是( )







A.![]() | B.![]() | C.![]() | D.![]() |
我国古代著名的数学家刘徽著有《海岛算经》.内有一篇:“今有望海岛,立两表齐、高三丈,前后相去千步,今后表与前表相直,从前表却行百二十三步,人目著地望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高及去表各几何?”(参考译文:假设测量海岛,立两根标杆,高均为5步,前后相距1000步,令前后两根标杆的底部和岛的底部在同一水平直线上,从前标杆退行123步,人的视线从地面(人的高度忽略不计)过标杆顶恰好观测到岛峰,从后标杆退行127步,人的视线从地面过标杆顶恰好观测到岛峰,问岛高多少?岛与前标杆相距多远?)(丈、步为古时计量单位,三丈=5步).则海岛高度为
A.1055步 | B.1255步 | C.1550步 | D.2255步 |