- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理和余弦定理
- + 解三角形的实际应用
- 正、余弦定理在几何中的应用
- 正、余弦定理的实际应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图所示,在“勾股弦方图”中,以弦为边长得到的正方形
是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”.若正方形
与正方形
的面积分别为25和1,则
( )






A.![]() | B.![]() | C.![]() | D.![]() |
已知△ABC的三个内角A,B,C的对边分别为a,b,c,且
=2c2,sinA(1-cosC)=sinBsinC,b=6,AB边上的点M满足
,过点M的直线与射线CA,CB分别交于P,Q两点,则MP2+MQ2的最小值是( )


A.36 | B.37 | C.38 | D.39 |