- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦函数的图象
- 余弦函数的图象
- 正弦函数的单调性
- 正弦函数的定义域、值域和最值
- 正弦函数的奇偶性
- 正弦函数的周期性
- + 正弦函数的对称性
- 求正弦(型)函数的对称轴及对称中心
- 正弦函数的对称轴与单调性、最值的关系
- 由正弦函数的对称性求单调性
- 利用正弦函数的对称性求参数
- 利用正弦函数的对称性求最值
- 正弦函数对称性的其他应用
- 余弦函数的单调性
- 余弦函数的定义域、值域和最值
- 余弦函数的奇偶性
- 余弦函数的周期性
- 余弦函数的对称性
- 正切函数的图象
- 正切函数的单调性
- 正切函数的奇偶性
- 正切函数的周期性
- 正切函数的对称性
- 正切函数的定义域、值域和最值
- 正(余)弦型三角函数的图象
- 正切型三角函数的图象
- 三角函数图象的综合应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列命题中,正确的个数为( )
(1)将函数
图像向左平移
个单位得到函数
的图像
(2)函数
图像关于点
对称的充要条件是
,
(3)若
,则
.
(1)将函数



(2)函数




(3)若


A.1 | B.2 | C.3 | D.0 |
已知函数
的 部分图象如图所示:

(1)求
的解析式;
(2)求
的单调区间和对称中心坐标;
(3)将
的图象向左平移
个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数
的图象,求函数
在
上的最大值和最小值.


(1)求

(2)求

(3)将





函数
(
)的图像与其对称轴在
轴右侧的交点从左到右依次记为
,
,
,
,
,
,在点列
中存在三个不同的点
、
、
,使得△
是等腰直角三角形,将满足上述条件的
值从小到大组成的数记为
,则
________.

















将函数
的图象向左平移
个单位,然后纵坐标不变,横坐标变为原来的
倍,得到
的图象,下面四个结论正确的是( )




A.函数![]() ![]() |
B.将函数![]() ![]() |
C.点![]() ![]() |
D.函数![]() ![]() ![]() |