- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦函数的图象
- 余弦函数的图象
- 正弦函数的单调性
- + 正弦函数的定义域、值域和最值
- 求含sinx型函数的定义域
- 求含sinx型函数的值域和最值
- 由正弦(型)函数的值域(最值)求参数
- 正弦函数的奇偶性
- 正弦函数的周期性
- 正弦函数的对称性
- 余弦函数的单调性
- 余弦函数的定义域、值域和最值
- 余弦函数的奇偶性
- 余弦函数的周期性
- 余弦函数的对称性
- 正切函数的图象
- 正切函数的单调性
- 正切函数的奇偶性
- 正切函数的周期性
- 正切函数的对称性
- 正切函数的定义域、值域和最值
- 正(余)弦型三角函数的图象
- 正切型三角函数的图象
- 三角函数图象的综合应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
选修4-4:坐标系与参数方程
在直角坐标系
中,以原点
为极点,
轴的正半轴为极轴,建立极坐标系.已知点
的极坐标为
,曲线
的参数方程为
(
为参数)
(1)求点
的直角坐标;化曲线
的参数方程为普通方程;
(2)设
为曲线
上一动点,以
为对角线的矩形
的一边垂直于极轴,求矩形
周长的最小值,及此时
点的直角坐标.
在直角坐标系








(1)求点


(2)设






已知函数f(x)=sinx-
cosx+2,记函数f(x)的最小正周期为β,向量a=(2,cosα),b=(1,tan(α+
))(0<α<
),且a·b=
.
(1)求f(x)在区间
上的最值;
(2)求
的值.




(1)求f(x)在区间

(2)求
