- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦函数的图象
- 余弦函数的图象
- 正弦函数的单调性
- + 正弦函数的定义域、值域和最值
- 求含sinx型函数的定义域
- 求含sinx型函数的值域和最值
- 由正弦(型)函数的值域(最值)求参数
- 正弦函数的奇偶性
- 正弦函数的周期性
- 正弦函数的对称性
- 余弦函数的单调性
- 余弦函数的定义域、值域和最值
- 余弦函数的奇偶性
- 余弦函数的周期性
- 余弦函数的对称性
- 正切函数的图象
- 正切函数的单调性
- 正切函数的奇偶性
- 正切函数的周期性
- 正切函数的对称性
- 正切函数的定义域、值域和最值
- 正(余)弦型三角函数的图象
- 正切型三角函数的图象
- 三角函数图象的综合应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有一块半径为
,圆心角为
的扇形钢板,需要将它截成一块矩形钢板,分别按图1和图2两种方案截取(其中方案二中的矩形关于扇形的对称轴对称).

图1:方案一 图2:方案二
(1)求按照方案一截得的矩形钢板面积的最大值;
(2)若方案二中截得的矩形
为正方形,求此正方形的面积;
(3)若要使截得的钢板面积尽可能大,应选择方案一还是方案二?请说明理由,并求矩形钢板面积的最大值.




图1:方案一 图2:方案二
(1)求按照方案一截得的矩形钢板面积的最大值;
(2)若方案二中截得的矩形

(3)若要使截得的钢板面积尽可能大,应选择方案一还是方案二?请说明理由,并求矩形钢板面积的最大值.
定义函数
,给出下列四个命题,正确的是( )

A.函数的值域为![]() |
B.当且仅当![]() ![]() |
C.函数是以![]() |
D.当且仅当![]() ![]() ![]() |
已知函数
.
(1)求函数
的最小正周期;
(2)将函数
的图象向右平移
个单位长度,再向下平移
(
)个单位长度后得到函数
的图象,且函数
的最大值为2.
(ⅰ)求函数
的解析式; (ⅱ)证明:存在无穷多个互不相同的正整数
,使得
.

(1)求函数

(2)将函数






(ⅰ)求函数



已知函数
(
,
)的图象相邻两条对称轴之间的距离为
,且
.
(1)求
,
的值;
(2)求
图象的对称轴方程;
(3)若不等式
在区间
上恒成立,求实数
的取值范围.





(1)求


(2)求

(3)若不等式


