- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- + 利用导数研究函数的最值
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y(分钟)与车辆进入该路段的时刻t之间的关系可近似地用如下函数给出:

求从上午6点到中午12点,通过该路段用时最多的时刻.

求从上午6点到中午12点,通过该路段用时最多的时刻.
已知函数
.
(Ⅰ)若
,证明:函数
在
上单调递减;
(Ⅱ)是否存在实数
,使得函数
在
内存在两个极值点?若存在,求实数
的取值范围;若不存在,请说明理由. (参考数据:
,
)

(Ⅰ)若



(Ⅱ)是否存在实数





